Rapid determination of gross alpha and beta activity in seafood utilizing microwave digestion and liquid scintillation counting



This paper describes a method for rapid determination of gross alpha and beta activity in seafood using liquid scintillation counting and microwave digestion for fast sample decomposition. The general group of seafood was divided into two groups based on its structure, whether it has shell or not. The selected group of radionuclides was chosen with respect to military significance, radiotoxicity, and possibility of potential misuse. 90Sr and 239Pu were selected as model radionuclides.


Seafood Fish Shrimp Cod Octopus Squid Microwave Digestion Liquid scintillation Gross alpha/beta 


  1. 1.
    Hamada N, Ogino H (2012) Food safety regulations: what we learned from the Fukushima nuclear accident. J Environ Radioact 11:83–99CrossRefGoogle Scholar
  2. 2.
    Wada T et al (2013) Effect of the nuclear disaster on marine products in Fukushima. J Environ Radioact 124:246–254CrossRefGoogle Scholar
  3. 3.
    Bu K, Cizdziel JV, Dasher D (2013) Plutonium concentration and 240Pu/239Pu atom ratio in biota collected from Amchitka Island, Alaska: recent measurements using ICP-SFMS. J Environ Radioact 124:29–36CrossRefGoogle Scholar
  4. 4.
    Batlle JV et al (2014) The impact of the Fukushima nuclear accident on marine biota: retrospective assessment of the first year and retrospectives. Sci Total Environ 487:143–153CrossRefGoogle Scholar
  5. 5.
    Yoshimura M, Yokoduka T (2014) Radioactive contamination of fishes in lake and streams impacted by the Fukushima nuclear power plant accident. Sci Total Environ 182–483:184–192CrossRefGoogle Scholar
  6. 6.
    Maxwell SL, Culligan BK, Kelsey-Wall A, Shaw PJ (2012) Rapid determination of actinides in emergency food samples. J Radioanal Nucl Chem 292:339–347. doi: 10.1007/s10967-011-1411-5 CrossRefGoogle Scholar
  7. 7.
    García R, Kahn B (2001) Total dissolution of environmental and biological samples by closed-vessel microwave digestion for radiometric analysis. J Radioanal Nucl Chem 250(1):85–91CrossRefGoogle Scholar
  8. 8.
    Baron G, Brun S, Grière AS, Metz S, Boursier B (2004) Microwave digestion for rapid radiostrontium analyses in salmon fishbone. J Radioanal Nucl Chem 260(2):283–289CrossRefGoogle Scholar
  9. 9.
    Kwong LLW, Gastaud J, La Rosa J, Lee SH, Povinec PP, Wyse E (2004) Determination of 241Pu in marine samples using co-precipitation with rare earth fluoride and liquid scintillation spectrometry. J Radioanal Nucl Chem 261(2):283–289CrossRefGoogle Scholar
  10. 10.
    Maxwell SL, Culligan BK, Hutchison JB, Spencer RB (2013) Rapid fusion method for determination of actinides in fecal samples. J Radioanal Nucl Chem 298:1533–1542. doi: 10.1007/s10967-013-2541-8 CrossRefGoogle Scholar
  11. 11.
    Mola M, Palomo M, Pen˜alver A, Aguilar C, Borrull F (2013) Radionuclides in biota collected near a dicalcium phosphate plant, southern Catalonia, Spain. J Radioanal Nucl Chem 298:2017–2024. doi: 10.1007/s10967-013-2690-9 CrossRefGoogle Scholar
  12. 12.
    Choi KS, Lee CH, Im HJ, Ahn HJ, Song K (2014) Sample pretreatment for the determination of gamma emitting nuclides in dry radioactive waste using a dry ashing and high-performance microwave digestion system. J Radioanal Nucl Chem 301:567–571. doi: 10.1007/s10967-014-3163-5 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.NBC Defence InstituteUniversity of DefenceVyškovCzech Republic

Personalised recommendations