Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 303, Issue 3, pp 2185–2192 | Cite as

Effects of organic acids on Eu(III) sorption on Na-bentonite

  • N. Guo
  • J. W. Yang
  • R. Zhang
  • Y. L. Ye
  • W. S. Wu
  • Z. J. Guo
Article
  • 233 Downloads

Abstract

Sorption of Eu(III) on Na-bentonite dispersed in sodium chloride media was studied as a function of pH via batch-type experiments. The sorption was found increased with the increasing pH. The sorption kinetics of Eu(III) on Na-bentonite in the absence and presence of different organic acids were described by pseudo-second-order model at pH 6.0 ± 0.1. The effects of different types of organic acids on the sorption of Eu(III) to Na-bentonite were extensively investigated. It was found that the concentration ratio of Eu(III) to ligand is a critical factor to the effect of an organic acid on Eu(III) sorption.

Keywords

Organic acid Eu(III) Bentonite Sorption 

Notes

Acknowledgments

The financial support by the National Natural Science Foundation of China (No. 91226113) is gratefully appreciated.

References

  1. 1.
    Bradbury MH, Baeyens B (2009) Experimental and modelling studies on the pH buffering of MX-80 bentonite porewater. Appl Geochem 24:419–425CrossRefGoogle Scholar
  2. 2.
    Boult KA, Cowper MM, Heath TG, Sato H, Shibutani T, Yui M (1998) Towards an understanding of the sorption of U(VI) and Se(IV) on sodium bentonite. J Contam Hydrol 35:141–150CrossRefGoogle Scholar
  3. 3.
    Nagasaki S, Tanaka S, Suzuki A (1999) Sorption of neptunium on bentonite and its migration in geosphere. Colloids Surf A 155:137–143CrossRefGoogle Scholar
  4. 4.
    Rabung T, Pierret MC, Bauer A, Geckeis H, Bradbury MH, Baeyens B (2005) Sorption of Eu(III)/Cm(III) on Ca-montmorillonite and Na-illite. Part 1: batch sorption and time-resolved laser fluorescence spectroscopy experiments. Geochim Cosmochim Acta 69:5393–5402CrossRefGoogle Scholar
  5. 5.
    Zhao DL, Chen SH, Yang SB, Yang X, Yang ST (2011) Investigation of the sorption behavior of Cd(II) on GMZ bentonite as affected by solution chemistry. Chem Eng J 166:1010–1016CrossRefGoogle Scholar
  6. 6.
    Bradbury MH, Baeyens B (2002) Sorption of Eu on Na- and Ca-montmorillonites: experimental investigations and modelling with cation exchange and surface complexation. Geochim Cosmochim Acta 66:2325–2334CrossRefGoogle Scholar
  7. 7.
    Hurel C, Marmier N (2010) Sorption of europium on a MX-80 bentonite sample: experimental and modelling results. J Radioanal Nucl Chem 284:225–230CrossRefGoogle Scholar
  8. 8.
    Lu SS, Xu H, Wang MM, Song XP, Liu Q (2011) Sorption of Eu(III) onto Gaomiaozi bentonite by batch technique as a function of pH, ionic strength, and humic acid. J Radioanal Nucl Chem 292:889–895Google Scholar
  9. 9.
    Bradbury MH, Baeyens B (2005) Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montmorillonite: linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides. Geochim Cosmochim Acta 69:875–892CrossRefGoogle Scholar
  10. 10.
    Dong WM, Wang XK, Bian XY, Wang AX, Du JZ, Tao ZY (2001) Comparative study on sorption/desorption of radioeuropium on alumina, bentonite and red earth: effects of pH, ionic strength, fulvic acid, and iron oxides in red earth. Appl Radiat Isot 54:603–610CrossRefGoogle Scholar
  11. 11.
    Guo ZJ, Xu J, Shi KL, Tang YQ, Wu WS, Tao ZY (2009) Eu(III) adsorption/desorption on Na-bentonite: experimental and modeling studies. Colloids Surf A 339:126–133CrossRefGoogle Scholar
  12. 12.
    Zhang FS, Ma J, Cao YP (1997) Phosphorus deficiency enhances root exudation of low-molecular weight organic acids and utilization of sparingly soluble inorganic phosphate by radish (Raghanus sativus L.) and rape (Brassica napus L.) plants. Plant Soil 196:261–264CrossRefGoogle Scholar
  13. 13.
    Cristofaro AD, Zhou DH, He JZ, Violante A (1998) Comparison between oxalate and humate on copper adsorption on goethite. Fresenius Environ Bull 7:570–576Google Scholar
  14. 14.
    Kozdroj J, Elsas JD (2000) Response of the bacterial community to root exudates in soil polluted with heavy metals assessed by molecular and cultural approaches. Soil Biol Biochem 32:1405–1417CrossRefGoogle Scholar
  15. 15.
    Bacelo J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminium toxicity and resistance: a review. Environ Exp Bot 48:75–92CrossRefGoogle Scholar
  16. 16.
    Wang YJ, Chen JH, Cui YX, Wang SQ, Zhou DM (2009) Effects of low-molecular-weight organic acids on Cu(II) adsorption onto hydroxyapatite nanoparticles. J Hazard Mater 162:1135–1140CrossRefGoogle Scholar
  17. 17.
    Hering JG (1995) Interaction of organic matter with mineral surfaces: effects on geochemical processes at the mineral-water interface. ACS Adv Chem Ser 244:95–110CrossRefGoogle Scholar
  18. 18.
    Gu B, Schmitt J, Chen ZH, Liang LY, McCarthy JF (1995) Adsorption and desorption of different organic matter fractions on iron oxide. Geochim Cosmochim Acta 59:219–229CrossRefGoogle Scholar
  19. 19.
    Schlautman MA, Morgan JJ (1994) Adsorption of aquatic humic substances on colloidal-size aluminum oxide particles: influence of solution chemistry. Geochim Cosmochim Acta 58:4293–4303CrossRefGoogle Scholar
  20. 20.
    Davis JA (1984) Complexation of trace metals by adsorbed natural organic matter. Geochim Cosmochim Acta 48:679–691CrossRefGoogle Scholar
  21. 21.
    Stumm W, Kummert R, Sigg L (1980) A ligand exchange model for the adsorption of inorganic and organic ligands at hydrous oxide interfaces. Croat Chem Acta 53:291–312Google Scholar
  22. 22.
    Alliot C, Bion L, Mercier F, Toulhoat P (2005) Sorption of aqueous carbonic, acetic, and oxalic acids onto α-alumina. J Colloid Interface Sci 287:444–451CrossRefGoogle Scholar
  23. 23.
    Calvet R (1989) Adsorption of organic chemicals in soils. Environ Health Perspect 83:145–177CrossRefGoogle Scholar
  24. 24.
    Davis JA (1982) Adsorption of natural dissolved organic matter at the oxide/water interface. Geochim Cosmochim Acta 46:2381–2393CrossRefGoogle Scholar
  25. 25.
    Sigg L, Stumm W (1981) The interaction of anions and weak acids with the hydrous goethite (alpha-FeOOH) surface. Colloids Surf 2:101–117CrossRefGoogle Scholar
  26. 26.
    Alliot C, Bion L, Mercier F, Toulhoat P (2006) Effect of aqueous acetic, oxalic, and carbonic acids on the adsorption of europium(III) onto alpha-alumina. J Colloid Interface Sci 298:573–581CrossRefGoogle Scholar
  27. 27.
    Alliot C, Vitorge P, Bion L, Mercier F (2005) Effect of aqueous acetic, oxalic and carbonic acids on the adsorption of uranium(VI) onto alpha-alumina. New J Chem 29:1409–1415CrossRefGoogle Scholar
  28. 28.
    Alliot C, Bion L, Mercier F, Vitorge P, Toulhoat P (2005) Effect of aqueous acetic, oxalic and carbonic acids on the adsorption of americium onto α-alumina. Radiochim Acta 93:435–442CrossRefGoogle Scholar
  29. 29.
    Pathak PN, Choppin GR (2007) Effect of complexing anions on europium sorption on suspended silica: a TRLFS study for ternary complex formation. Radiochim Acta 95:267–273Google Scholar
  30. 30.
    Redden G, Bargar J, Bencheikh-Latmani R (2001) Citrate enhanced uranyl adsorption on goethite: an EXAFS analysis. J Colloid Interface Sci 244:211–219CrossRefGoogle Scholar
  31. 31.
    Benyahya L, Garnier JM (1999) Effect of salicylic acid upon trace-metal sorption (CdII, ZnII, CoII, and MnII) onto alumina, silica, and kaolinite as a function of pH. Environ Sci Technol 33:1398–1407CrossRefGoogle Scholar
  32. 32.
    Sun YB, Li JX, Wang XK (2014) The retention of uranium and europium onto sepiolite investigated by macroscopic, spectroscopic and modeling techniques. Geochim Cosmochim Acta 140:621–643CrossRefGoogle Scholar
  33. 33.
    Tan XL, Fan QH, Wang XK, Grambow B (2009) Eu(III) sorption to TiO2 (anatase and rutile): batch, XPS, and EXAFS studies. Environ Sci Technol 43:3115–3121CrossRefGoogle Scholar
  34. 34.
    Chen ZY, Jin Q, Guo ZJ, Montavon G, Wu WS (2014) Surface complexation modeling of Eu(III) and phosphate on Na-bentonite: binary and ternary adsorption systems. Chem Eng J 256:61–68.Google Scholar
  35. 35.
    Fan QH, Tan XL, Li JX, Wang XK, Wu WS, Montavon G (2009) Sorption of Eu(III) on attapulgite studied by batch, XPS, and EXAFS techniques. Environ Sci Technol 43:5776–5782CrossRefGoogle Scholar
  36. 36.
    Lagergren S (1898) About the theory of so-called adsorption of soluble substance. Handlingar 24:1–39Google Scholar
  37. 37.
    Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465CrossRefGoogle Scholar
  38. 38.
    Gustafsson JP (2010) Visual MINTEQ version 3.0, KTH, Stockholm, SwedenGoogle Scholar
  39. 39.
    Shan XQ, Lian J, Wen B (2002) Effects of organic acids on adsorption and desorption of rare earth elements. Chemosphere 47:701–710CrossRefGoogle Scholar
  40. 40.
    Abollino O, Giacomino A, Malandrino M, Mentasti E (2008) Interaction of metal ions with montmorillonite and vermiculite. Appl Clay Sci 38:227–236CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • N. Guo
    • 1
  • J. W. Yang
    • 1
  • R. Zhang
    • 1
  • Y. L. Ye
    • 1
  • W. S. Wu
    • 1
  • Z. J. Guo
    • 1
  1. 1.School of Nuclear Science and TechnologyLanzhou UniversityLanzhouChina

Personalised recommendations