Skip to main content
Log in

Adsorption of gaseous radioactive iodine by Ag/13X zeolite at high temperatures

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Ag/13X adsorbents were synthesized, characterized and tested for decontamination of gaseous effluents from 131I2 at high temperatures. X-ray diffraction patterns showed that the Ag/13X samples maintained a stable structure after calcined at 650 °C for 2 h. The decontamination factors achieved with 15 % Ag/13X and 20 % Ag/13X adsorbents for 131I2 were nearly close to 103 at 650 °C. In addition, 15 % Ag/13X had a stable performance for removal of 131I2 at 550 and 650 °C, even after calcined at 550 and 650 °C for over 10 h, which might be suitable for future potential use during nuclear reactor operation or in the case of nuclear accidents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kintisch E (2005) Science 310:1406-1406

    Google Scholar 

  2. Lee WE, Ojovan MI, Stennett MC, Hyatt NC (2006) Adv Appl Ceram 105:3–12

    Article  CAS  Google Scholar 

  3. Zha YR, Zou JM (1999) Chin Occup Med 26:51–55

    Google Scholar 

  4. Choi BS, Park GI, Kim JH, Lee JW, Ryu SK (2001) Adsorpt-J Int Adsorpt Soc 7:91–103

    Article  CAS  Google Scholar 

  5. Sava DF, Rodriguez MA, Chapman KW, Chupas PJ, Greathouse JA, Crozier PS, Nenoff TM (2011) J Am Chem Soc 133:12398–12401

    Article  CAS  Google Scholar 

  6. Choi BS, Park GI, Lee JW, Yang HY, Ryu SK (2003) J Radioanal Nucl Chem 256:19–26

    Article  CAS  Google Scholar 

  7. Bo A, Sarina S, Zheng ZF, Yang DJ, Liu HW, Zhu HY (2013) J Hazard Mater 246:199–205

    Article  Google Scholar 

  8. Ye ML, Tang JJ, Ding X, He ZM, Tang ZH (1991) J Nucl Radiochem 13:169–175

    CAS  Google Scholar 

  9. Tang JJ, Ye ML, Mao Y, Lu SJ, Tang ZH, Guo ZH (1987) Nucl Sci Eng 7:144–148

    Google Scholar 

  10. Funabashi K, Fukasawa T, Kikuchi M (1995) Nucl Technol 109:366–372

    CAS  Google Scholar 

  11. Rovnyi SI, Pyatin NP, Istomin IA (2002) Atom Energy 92:534–535

    Article  CAS  Google Scholar 

  12. Boschetto DL, Lerin L, Cansian R, Pergher SBC, Di Luccio M (2012) Chem Eng J 204:210–216

    Article  Google Scholar 

  13. Bartolomeu R, Bertolo R, Casale S, Fernandes A, Henriques C, da Costa P, Ribeiro F (2013) Microporous Mesoporous Mat 169:137–147

    Article  CAS  Google Scholar 

  14. Ye LJ, Han L, Hou JW, Chen YS (2010) Chem World 51:711–714

    CAS  Google Scholar 

  15. Xiao HL, Liu JG (2000) Nucl Power Eng 21:357–361

    CAS  Google Scholar 

  16. Sultana A, Sasaki M, Suzuki K, Hamada H (2013) Appl Catal A-Gen 466:179–184

    Article  CAS  Google Scholar 

  17. Kim MK, Kim PS, Baik JH, Nam IS, Cho BK, Oh SH (2011) Appl Catal B-Environ 105:1–14

    Article  CAS  Google Scholar 

  18. Li CJ, Li YJ, Wang JN, Zhao L, Cheng J (2013) Chem Eng J 222:419–425

    Article  CAS  Google Scholar 

  19. Liu CJ, Mallinson R, Lobban L (1999) Appl Catal A-Gen 178:17–27

    Article  CAS  Google Scholar 

  20. Lacksonen JW, Kirby WH, Dryden CE (1963) J Chem Eng Data 8:524–525

    Article  CAS  Google Scholar 

  21. Patil KC, Rao CNR, Lacksone JW, Dryden CE (1967) J Inorg Nucl Chem 29:407–412

    Article  CAS  Google Scholar 

  22. Tang JJ, Ye ML, Rao YP, Ding X, Tang ZH (1991) Nucl Sci Eng 11:67–72

    Google Scholar 

  23. Chapman KW, Chupas PJ, Nenoff TM (2010) J Am Chem Soc 132:8897–8899

    Article  CAS  Google Scholar 

  24. Wilhelm JG, Schuettelkopf H, First MW (1972) CONF-720823, Proceedings of 12th AEC Air Cleaning Conference, Oak Ridge, Tennessee, USA

  25. Szente L, Fenyvesi E, Szejtli J (1999) Environ Sci Technol 33:4495–4498

    Article  CAS  Google Scholar 

  26. Sharygin LM, Tretyakov SY, Zlokazova EI, Korenkova AV (1997) Atom Energy 82:422–426

    Article  CAS  Google Scholar 

  27. Kulyukhin SA, Kulemin VV, Rumer IA, Krapukhin VB, Konovalova NA (2004) RadioChem 46:165–167

    Article  CAS  Google Scholar 

  28. Kulyukhin SA, Mikheev NB, Kamenskaya AN, Rumer IA, Konovalova NA (2004) Radiochemistry 46:484–489

    Article  CAS  Google Scholar 

  29. Kritskii VG, Ampelogova NI, Krupennikova VI, Kornienko VN, Ivanov VD, Rybkin NI (2004) Atom Energy 97:851–857

    Article  CAS  Google Scholar 

  30. Zhou J, Hao S, Gao L, Zhang Y (2014) Ann Nucl Eng 72:237–241

    Article  CAS  Google Scholar 

  31. Bevington PR, Robinson DK (1969) Data reduction and error analysis for the physical sciences. McGraw-Hill, New York

    Google Scholar 

  32. Waser J (1964) Quantitative Chemistry. Benjamin WA Inc, New York

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. ZX06901) and the National Science Foundation of China (Grant No. 21201013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiwei Chu.

Additional information

Qinghui Cheng and Weiwei Yang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Q., Yang, W., Li, Z. et al. Adsorption of gaseous radioactive iodine by Ag/13X zeolite at high temperatures. J Radioanal Nucl Chem 303, 1883–1889 (2015). https://doi.org/10.1007/s10967-014-3736-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3736-3

Keywords

Navigation