Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 303, Issue 3, pp 1883–1889 | Cite as

Adsorption of gaseous radioactive iodine by Ag/13X zeolite at high temperatures

  • Qinghui Cheng
  • Weiwei Yang
  • Zejun Li
  • Qiufeng Zhu
  • Taiwei Chu
  • Dehua He
  • Chao Fang
Article

Abstract

Ag/13X adsorbents were synthesized, characterized and tested for decontamination of gaseous effluents from 131I2 at high temperatures. X-ray diffraction patterns showed that the Ag/13X samples maintained a stable structure after calcined at 650 °C for 2 h. The decontamination factors achieved with 15 % Ag/13X and 20 % Ag/13X adsorbents for 131I2 were nearly close to 103 at 650 °C. In addition, 15 % Ag/13X had a stable performance for removal of 131I2 at 550 and 650 °C, even after calcined at 550 and 650 °C for over 10 h, which might be suitable for future potential use during nuclear reactor operation or in the case of nuclear accidents.

Keywords

Nuclear reactor Radioactive iodine Decontamination factor (DF) Stability Adsorption 

Notes

Acknowledgments

This work was supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. ZX06901) and the National Science Foundation of China (Grant No. 21201013).

References

  1. 1.
    Kintisch E (2005) Science 310:1406-1406Google Scholar
  2. 2.
    Lee WE, Ojovan MI, Stennett MC, Hyatt NC (2006) Adv Appl Ceram 105:3–12CrossRefGoogle Scholar
  3. 3.
    Zha YR, Zou JM (1999) Chin Occup Med 26:51–55Google Scholar
  4. 4.
    Choi BS, Park GI, Kim JH, Lee JW, Ryu SK (2001) Adsorpt-J Int Adsorpt Soc 7:91–103CrossRefGoogle Scholar
  5. 5.
    Sava DF, Rodriguez MA, Chapman KW, Chupas PJ, Greathouse JA, Crozier PS, Nenoff TM (2011) J Am Chem Soc 133:12398–12401CrossRefGoogle Scholar
  6. 6.
    Choi BS, Park GI, Lee JW, Yang HY, Ryu SK (2003) J Radioanal Nucl Chem 256:19–26CrossRefGoogle Scholar
  7. 7.
    Bo A, Sarina S, Zheng ZF, Yang DJ, Liu HW, Zhu HY (2013) J Hazard Mater 246:199–205CrossRefGoogle Scholar
  8. 8.
    Ye ML, Tang JJ, Ding X, He ZM, Tang ZH (1991) J Nucl Radiochem 13:169–175Google Scholar
  9. 9.
    Tang JJ, Ye ML, Mao Y, Lu SJ, Tang ZH, Guo ZH (1987) Nucl Sci Eng 7:144–148Google Scholar
  10. 10.
    Funabashi K, Fukasawa T, Kikuchi M (1995) Nucl Technol 109:366–372Google Scholar
  11. 11.
    Rovnyi SI, Pyatin NP, Istomin IA (2002) Atom Energy 92:534–535CrossRefGoogle Scholar
  12. 12.
    Boschetto DL, Lerin L, Cansian R, Pergher SBC, Di Luccio M (2012) Chem Eng J 204:210–216CrossRefGoogle Scholar
  13. 13.
    Bartolomeu R, Bertolo R, Casale S, Fernandes A, Henriques C, da Costa P, Ribeiro F (2013) Microporous Mesoporous Mat 169:137–147CrossRefGoogle Scholar
  14. 14.
    Ye LJ, Han L, Hou JW, Chen YS (2010) Chem World 51:711–714Google Scholar
  15. 15.
    Xiao HL, Liu JG (2000) Nucl Power Eng 21:357–361Google Scholar
  16. 16.
    Sultana A, Sasaki M, Suzuki K, Hamada H (2013) Appl Catal A-Gen 466:179–184CrossRefGoogle Scholar
  17. 17.
    Kim MK, Kim PS, Baik JH, Nam IS, Cho BK, Oh SH (2011) Appl Catal B-Environ 105:1–14CrossRefGoogle Scholar
  18. 18.
    Li CJ, Li YJ, Wang JN, Zhao L, Cheng J (2013) Chem Eng J 222:419–425CrossRefGoogle Scholar
  19. 19.
    Liu CJ, Mallinson R, Lobban L (1999) Appl Catal A-Gen 178:17–27CrossRefGoogle Scholar
  20. 20.
    Lacksonen JW, Kirby WH, Dryden CE (1963) J Chem Eng Data 8:524–525CrossRefGoogle Scholar
  21. 21.
    Patil KC, Rao CNR, Lacksone JW, Dryden CE (1967) J Inorg Nucl Chem 29:407–412CrossRefGoogle Scholar
  22. 22.
    Tang JJ, Ye ML, Rao YP, Ding X, Tang ZH (1991) Nucl Sci Eng 11:67–72Google Scholar
  23. 23.
    Chapman KW, Chupas PJ, Nenoff TM (2010) J Am Chem Soc 132:8897–8899CrossRefGoogle Scholar
  24. 24.
    Wilhelm JG, Schuettelkopf H, First MW (1972) CONF-720823, Proceedings of 12th AEC Air Cleaning Conference, Oak Ridge, Tennessee, USAGoogle Scholar
  25. 25.
    Szente L, Fenyvesi E, Szejtli J (1999) Environ Sci Technol 33:4495–4498CrossRefGoogle Scholar
  26. 26.
    Sharygin LM, Tretyakov SY, Zlokazova EI, Korenkova AV (1997) Atom Energy 82:422–426CrossRefGoogle Scholar
  27. 27.
    Kulyukhin SA, Kulemin VV, Rumer IA, Krapukhin VB, Konovalova NA (2004) RadioChem 46:165–167CrossRefGoogle Scholar
  28. 28.
    Kulyukhin SA, Mikheev NB, Kamenskaya AN, Rumer IA, Konovalova NA (2004) Radiochemistry 46:484–489CrossRefGoogle Scholar
  29. 29.
    Kritskii VG, Ampelogova NI, Krupennikova VI, Kornienko VN, Ivanov VD, Rybkin NI (2004) Atom Energy 97:851–857CrossRefGoogle Scholar
  30. 30.
    Zhou J, Hao S, Gao L, Zhang Y (2014) Ann Nucl Eng 72:237–241CrossRefGoogle Scholar
  31. 31.
    Bevington PR, Robinson DK (1969) Data reduction and error analysis for the physical sciences. McGraw-Hill, New YorkGoogle Scholar
  32. 32.
    Waser J (1964) Quantitative Chemistry. Benjamin WA Inc, New YorkGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Qinghui Cheng
    • 1
  • Weiwei Yang
    • 2
  • Zejun Li
    • 1
  • Qiufeng Zhu
    • 2
  • Taiwei Chu
    • 1
  • Dehua He
    • 2
  • Chao Fang
    • 3
  1. 1.Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, College of Chemistry and Molecular EngineeringPeking UniversityBeijingPeople’s Republic of China
  2. 2.Key Lab of Organoelectronics & Molecular Engineering of Ministry of Education, Department of ChemistryTsinghua UniversityBeijingPeople’s Republic of China
  3. 3.Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations