Journal of Radioanalytical and Nuclear Chemistry

, Volume 303, Issue 3, pp 1763–1770 | Cite as

Electrochemical behavior of cerium(III) in NaCl–KCl molten salt

  • Yan-Hong Jia
  • Hui He
  • Rus-Han Lin
  • Hong-Bin Tang
  • You-Qun Wang


This work presented the electrochemical study of cerium(III) on the insert electrode (Mo) in NaCl–KCl molten salt in the temperature range 954–1,007 K. The electrochemical methods such as cyclic voltammetry and square wave voltammetry were used for investigating the reduction of Ce(III). The results obtained showed that CeCl3 could be reduced into cerium metal in a quasi-reversible one-step process exchanging three electrons (Ce(III)+3e → Ce(0)) at the operating temperatures on a molybdenum cathode. The diffusion coefficients of Ce(III) ions at different temperatures were determined by cyclic voltammetry. The validity of the Arrhenius law was also verified and the activation energy for diffusion was found to be 46.0 kJ mol−1. The apparent standard potentials of the redox couple (Ce(III)/Ce(0)) at several temperatures was calculated. The thermodynamic properties of cerium trichloride have also been investigated.


Cerium NaCl–KCl Electrochemistry Diffusion coefficient Thermodynamics 



This work was supported by grants from the National Natural Science Foundation of China (contract Grant Number 91226201).


  1. 1.
    Frederic L, Henri G (2013) In: Frederic L, Burlington HG (eds) Molten salts chemistry from lab to applications. Elsevier Inc, New York, p 3Google Scholar
  2. 2.
    Hamel C, Chamelot P, Taxil P (2004) Neodymium (III) cathodic processes in molten fluorides. Electrochim Acta 49:4467–4476CrossRefGoogle Scholar
  3. 3.
    Kuznetsov SA, Gaune-Escard M (2001) Redox electrochemistry and formal standard redox potentials of the Eu(III):Eu(II) redox couple in an equimolar mixture of molten NaCl–KCl. Electrochim Acta 46(8):1101–1111CrossRefGoogle Scholar
  4. 4.
    Smolenski V, Novoselova A, Osipenko A, Caravaca C, De Córdoba G (2008) Electrochemistry of ytterbium (III) in molten alkali metal chlorides. Electrochim Acta 54(2):382–387CrossRefGoogle Scholar
  5. 5.
    Vandarkuzhali S, Gogoi N, Ghosh S, Prabhakara Reddy B, Nagarajan K (2012) Electrochemical behaviour of LaCl3 at tungsten and aluminium cathodes in LiCl–KCl eutectic melt. Electrochim Acta 59(1):245–255CrossRefGoogle Scholar
  6. 6.
    Sang-Eun B, Yong JP, Seul KM, Young HC, Kyuseok S (2010) Aluminum assisted electrodeposition of europium in LiCl–KCl molten salt. Electrochim Acta 55(8):3022–3025CrossRefGoogle Scholar
  7. 7.
    Bermejoa MR, Gomeza J, Martlnezb AM, Barradoa E, Castrillejo Y (2008) Electrochemistry of terbium in the eutectic LiCl–KCl. Electrochim Acta 53(16):5106–5112CrossRefGoogle Scholar
  8. 8.
    Virgil C, Anamaria P, Mircea O (2010) Electrochemical studies on cerium(III) in molten fluoride mixtures. J Rare Earth 28(3):428–434CrossRefGoogle Scholar
  9. 9.
    Lin RS, Ye GA, He H, Tang HB, Ouyang YG (2012) Electrochemical behavior of Ce(III) in LiF–BaF2 melts. J Rare Earth 30(2):151–154CrossRefGoogle Scholar
  10. 10.
    Wang CS, Liu Y, He H, Gao FX, Liu LS, Chang SW, Guo JH, Chang L, Ouyang YG (2013) Electrochemical behavior of cerium ion in molten LiCl–KCl. J Rare Earth 31(4):405–409CrossRefGoogle Scholar
  11. 11.
    Inzelt G et al (2013) Handbook of reference electrodes, chapter 7. Reference electrodes for ionic liquids and molten salts Clayton South. Springer, BerlinGoogle Scholar
  12. 12.
    Osamu S, Takayuki N, Akihiro U, Hajimu Y (2008) Electrochemical properties of the Ag+|Ag and other reference electrodes in the LiCl–KCl eutectic melts. J Alloys Compd 456(1,2):498–502Google Scholar
  13. 13.
    Li GX, Zhang SL, Qiao ZY, Wu SM, Yao DK, Wang WS (1983) A Ag/AgCl reference electrode with a long periodic stability for use in LiCl–KCl–NaCl molten salt system. Acad J Steel Acad (in China.) 4(1):97–103Google Scholar
  14. 14.
    Tang H, Pesic B (2014) Electrochemical behavior of LaCl3 and morphology of La deposit on molybdenum substrate in molten LiCl–KCl eutectic salt. Electrochim Acta 119(10):120–130CrossRefGoogle Scholar
  15. 15.
    Zhang JS (2014) Electrochemistry of actinides and fission products in molten salts-data review. J Nucl Mater 447(1–3):271–284CrossRefGoogle Scholar
  16. 16.
    Martinot L, Bohet J, Duyckaerts G, Muller W (1975) Thermodynamic properties of dilute solution of ThCl4 in (Li–K)Cl and(Na–K)Cl eutectics. J Inorg Nucl Chem 37(7):315–319Google Scholar
  17. 17.
    Srinivasan R, Flengas SN (1964) Electrode potentials of thorium tetrachloride in alkali chloride melts. Can J Chem 42(6):1315–1322CrossRefGoogle Scholar
  18. 18.
    Delahay (1954) New instrumental methods in electrochemistry. Interscience Publishers, New YorkGoogle Scholar
  19. 19.
    Lizuka M (1998) Diffusion coefficients of cerium and gadolinium in molten LiCl–KCl. J Electrochem Soc 145(1):84–88CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Yan-Hong Jia
    • 1
  • Hui He
    • 1
  • Rus-Han Lin
    • 1
  • Hong-Bin Tang
    • 1
  • You-Qun Wang
    • 1
  1. 1.Department of RadiochemistryChina Institute of Atomic EnergyBeijingPeople’s Republic of China

Personalised recommendations