Calcium alginate and chitosan as potential sorbents for strontium radionuclide

  • Leon Fuks
  • Agata Oszczak
  • Ewa Gniazdowska
  • Dariusz Sternik


This work reports the adsorption of strontium(II) from aqueous solutions onto calcium alginate (CA) and chitosan (CH) materials. The adsorption process was studied in batch experiments as a function of the pH of the solution, contact time, and temperature. Freundlich isotherm was found to describe the sorption process comparatively well as the Langmuir model. Laboratory obtained spherical beads of CA seems to be a better sorbent than commercially available materials. A contact time of about 4 h and neutral pH of the initial aqueous solution seem to be optimal conditions for Sr-85 to be removed from contaminated solutions using alginate beads.


Water treatment Calcium alginate Chitosan Strontium-85 Adsorption Isotherm 



This research has been financed from the National Centre for Research and Development (Poland) through the Strategic Program "Technologies Supporting Development of Safe Nuclear Power Engineering", task 4 "Development of spent nuclear fuel and radioactive waste management techniques and technologies".


  1. 1.
    Saha GB (2004) Fundamentals of nuclear pharmacy. 5th ed. Springer, New York, pp 60, 130, 346Google Scholar
  2. 2.
    Nightengale B, Brune M, Blizzard SP, Ashley-Johnson M, Slan S (1995) Strontium chloride Sr 89 for treating pain from metastatic bone disease. Am J Health Syst Pharm 52:2189–2195Google Scholar
  3. 3.
    Robinson RG, Preston DF, Schiefelbein M, Baxter KG (1995) Strontium-89 therapy for the palliation of pain due to osseous metastases. J Am Med Assoc 274:420–424CrossRefGoogle Scholar
  4. 4.
    Amano H, Yanase N (1990) Measurement of 90Sr in environmental samples by cation-exchange and liquid scintillation counting. Talanta 37:585–590CrossRefGoogle Scholar
  5. 5.
    Stella R, Valentini MTG, Maggi L (1993) Determination of 90Sr and milk by using two inorganic exchangers. Appl Radiat Isot 44:1093–1096CrossRefGoogle Scholar
  6. 6.
    Wüthrich M, Mauch H (1975) Wasseraufbereitung durch umgekehrte osmose. [Water Treatment by Reversed Osmosis.]. Tech Mitt PTT, 53:252–263Google Scholar
  7. 7.
    Benzi P, Operti L, Volpe P (1988) On the reliability of a rapid method for the determination of 90Sr in natural samples. J Radioanal Nucl Chem 126:245–256CrossRefGoogle Scholar
  8. 8.
    Bojanowski R, Knapinska-Skiba D (1990) Determination of low-level 90Sr in environmental materials: a novel approach to the classical method. J Radioanal Nucl Chem 138:207–218CrossRefGoogle Scholar
  9. 9.
    Blackbum R, Al-Masri MS (1993) Radioassay of strontium-90 in the presence of calcium-45 and radiocaesium (134Cs and 137Cs). Appl Radiat Isot 44:683–686CrossRefGoogle Scholar
  10. 10.
    Rudd EJ, Walton CW (eds) (2000) Environmental aspects of electrochemical technology: radiological decontamination. The Electrochemical Society, PenningtonGoogle Scholar
  11. 11.
    Naja GM, Volesky B (2009) Treatment of metal-bearing effluents: removal and recovery. Taylor & Francis and CRC Press, Boca RatonGoogle Scholar
  12. 12.
    Mimura H, Ohta H, Akiba K, Onodera Y (2001) Uptake behaviour of americium on alginic acid and alginate polymer gels. J Radioanal Nucl Chem 247:33–38CrossRefGoogle Scholar
  13. 13.
    Dabbagh R, Ghafourian H, Baghvand A, Nabi GR, Ahmadi Faghih MA, Riahi H (2007) Bioaccumulation and biosorption of stable strontium and 90Sr by Oscillatoria homogenea cyanobacterium. J Radioanal Nucl Chem 272:53–59CrossRefGoogle Scholar
  14. 14.
    Barot NS, Bagla HK (2012) Biosorption of radiotoxic 90Sr by green adsorbent: dry cow dung pow-der. J Radioanal Nucl Chem 294:81–86CrossRefGoogle Scholar
  15. 15.
    Gok C, Gerstmann U, Aytas S (2013) Biosorption of radiostrontium by alginate beads. Application of isotherm models and thermodynamic studies. J Radioanal Nucl Chem 295:777–788CrossRefGoogle Scholar
  16. 16.
    Imessaoudene D, Bouzidi A, Hanini S (2013) Biosorption of strontium from aqueous solutions onto spent coffee grounds. J Radioanal Nucl Chem 298:893–902CrossRefGoogle Scholar
  17. 17.
    Freiser H, Nancollas GA (1987) Compendium of analytical nomenclature, 2nd edn, chap 3. Definitive rules 1987 IUPAC. Blackwell Scientific Publications, LondonGoogle Scholar
  18. 18.
    Chemical equilibrium diagrams:
  19. 19.
    Fuks L, Fidelis I (1987) Thermodynamic studies of complex formation of actinyl ions extracted with TBP from hydrochloric and nitric acids. J Radioanal Nucl Chem Lett 118:361–368CrossRefGoogle Scholar
  20. 20.
    Aksu Z (2002) Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions ontoChlorella vulgaris. Process Biochem 38:89–99CrossRefGoogle Scholar
  21. 21.
    Townley RR, Whitney WB, Felsing WA (1937) The solubilities of barium and strontium car-bonates in aqueous solutions of some alkali chlorides. J Am Chem Soc 59:631–633CrossRefGoogle Scholar
  22. 22.
    ’08, Wavefunction Inc., Irvine CA, USA, 2006-2009; ISBN978-1-890661-38-4Google Scholar
  23. 23.
    Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10CrossRefGoogle Scholar
  24. 24.
    Cheong M, Zhitomirsky I (2008) Electrodeposition of alginic acid and composite films. Colloids Surf A: Physicochem Eng Asp 328:73–78CrossRefGoogle Scholar
  25. 25.
    Soares JP, Santos JE, Chierice GO, Cavalheiro ETG (2004) Thermal behavior of alginic acid and its sodium salt. Ecl Quim 29:57–63CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Leon Fuks
    • 1
  • Agata Oszczak
    • 1
  • Ewa Gniazdowska
    • 1
  • Dariusz Sternik
    • 2
  1. 1.Institute of Nuclear Chemistry and TechnologyWarsawPoland
  2. 2.Maria Curie-Sklodowska UniversityLublinPoland

Personalised recommendations