Journal of Radioanalytical and Nuclear Chemistry

, Volume 303, Issue 3, pp 2539–2545 | Cite as

Efficiency testing of Red Lake protection dam on Rosu stream by 210Pb method

  • Robert-Csaba Begy
  • Hedvig Simon
  • Edina Reizer


The Red lake, a small lake from Romania is threatened by massive sedimentation, therefore two protection dams were constructed on Oii and Rosu brooks. The aim of this study is to get information about the variation of the retention capability of the dams using the 210Pb method. 210Pb, 226Ra and 137Cs were measured by gamma- and 210Po by alpha spectrometry. The values for mass sedimentation are between 0.17 ± 0.03–2.3 ± 0.4 g/cm2y for the Red Lake and 0.21 ± 0.03–0.9 ± 0.1 g/cm2y for the dam lake. Due to these high values, the dam lake will fill up in 20 ± 8y and 80 % of the Red Lake in 81 ± 30y.


210Pb dating method Sedimentation rate Protection dams 


  1. 1.
    Kading TJ, Mason RP, Leaner JJ (2009) Mercury contamination history of an estuarine floodplain reconstructed from a 210Pb-dated sediment core (Berg River, South Africa). Mar Pollut Bull 59(4–7):116–122CrossRefGoogle Scholar
  2. 2.
    Saxena DP, Joos P, Van Grieken R, Subramanian V (2002) Sedimentation rate of the floodplain sediments of the Yamuna river basin (tributary of the river Ganges, India) by using 210Pb and 137Cs techniques. J Radioanal Nucl Chem 251(3):399–408CrossRefGoogle Scholar
  3. 3.
    Ayç GA, Çetaku D, Erten HN (2004) Dating of Black Sea sediments from Romanian coast using natural 210Pb and fallout 137Cs. J Radioanal Nucl Chem 259(1):177–180CrossRefGoogle Scholar
  4. 4.
    Saito RT, Figueira RCL, Tessler MG, Cunha IIL (2001) Geochronology of sediments in the Cananeia-Iguape estuary and in southern continental shelf of São Paulo State, Brazil. J Radioanal Nucl Chem 250(1):109–115CrossRefGoogle Scholar
  5. 5.
    Yao SC, Li SJ, Zhang HC (2008) 210Pb and 137Cs dating of sediments from Zigetang Lake, Tibetan Plateau. J Radioanal Nucl Chem 278(1):55–58CrossRefGoogle Scholar
  6. 6.
    Ettler V, Navrátil T, Mihaljevič M, Rohovec J, Zuna M, Šebek O, Strnad L, Hojdová M (2008) Mercury deposition/accumulation rates in the vicinity of a lead smelter as recorded by a peat deposit. Atmos Environ 42(24):5968–5977CrossRefGoogle Scholar
  7. 7.
    Bao K, Xia W, Lu X, Wang G (2010) Recent atmospheric lead deposition recorded in an ombrotrophic peat bog of great Hinggan Mountains, Northeast China, from 210Pb and 137Cs dating. J Environ Radioact 101(9):773–779CrossRefGoogle Scholar
  8. 8.
    Piégay H, Walling DE, Landon N, He Q, Liébault F, Petiot R (2004) Contemporary changes in sediment yield in an Alpine Mountain basin due to afforestation (the upper Drôme in France). Catena 55(2):183–212CrossRefGoogle Scholar
  9. 9.
    Sikorski JAW, Goslar T (2003) Inventory of sediments of the dammed Lake in Kozl owa góra and first measurements of Pb activities in the Lake deposits. Geochronom 22:55–62Google Scholar
  10. 10.
    Kotarba A, Okas E, Wachniew PAW (2002) Pb dating of young holocene sediments in high-mountains Lakes of the Tatra Mountains. Geochronom 21:73–78Google Scholar
  11. 11.
    Ellison JC (2008) Long-term retrospection on mangrove development using sediment cores and pollen analysis: a review. Aquat Bot 89(2):93–104CrossRefGoogle Scholar
  12. 12.
    Guevara SR, Rizzo A, Sánchez R, Arribére M (2005) Heavy metal inputs in Northern Patagonia Lakes from short sediment core analysis. J Radioanal Nucl Chem 265(3):481–493CrossRefGoogle Scholar
  13. 13.
    Mil-Homens M, Stevens RL, Boer W, Abrantes F, Cato I (2006) Pollution history of heavy metals on the Portuguese shelf using 210Pb-geochronology. Sci Total Environ 367(1):466–480CrossRefGoogle Scholar
  14. 14.
    Appleby PG (2001) Chronostratigraphic techniques in recent sediments. In: Last WM, Smol JP (eds) Tracking environmental change using Lake sediments 1. Springer, Netherlands, pp 171–203Google Scholar
  15. 15.
    Appleby PG, Oldfield F (1978) The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediments. Catena 5:1–8CrossRefGoogle Scholar
  16. 16.
    Gelen A, Soto J, Gómez J, Díaz O (2004) Sediment dating of Santander Bay, Spain. J Radioanal Nucl Chem 261(2):437–441CrossRefGoogle Scholar
  17. 17.
    Ueda S, Ohtsuka Y, Kondo K (2004) Inventories of 239 + 240Pu, 137Cs, and excess 210Pb in sediment cores from brackish Lake Obuchi, Rokkasho Village, Japan. J Radioanal Nucl Chem 261(2):277–282CrossRefGoogle Scholar
  18. 18.
    Al Zamel AZ, Bou-Rabee F, Olszewski M, Bem H (2005) Natural radionuclides and 137Cs activity concentration in the bottom sediment cores from Kuwait Bay. J Radioanal Nucl Chem 266(2):269–276CrossRefGoogle Scholar
  19. 19.
    Pandi G (2004) Lacul Roşu. Studiu de hidrogeografie. Ed. Casa Cărţii de Ştiinţă, ClujGoogle Scholar
  20. 20.
    Sikorski J, Bluszcz A (2008) Application of α and γ spectrometry in the 210Pb method to model sedimentation in artificial retention reservoir. Geochronom 31(1):65–75Google Scholar
  21. 21.
    Murray AS, Marten R, Johnston A, Martin P (1987) Analysis for naturally occuring radionuclides at environmental concentrations by gamma spectrometry. J Radioanal Nucl Chem 115(2):263–288CrossRefGoogle Scholar
  22. 22.
    Begy RC, Timar-Gabor A, Somlai J, Cosma C (2011) A sedimentation study of St. Ana Lake (Romania) applying the 210Pb and 137Cs dating methods. Geochronometria 38(2):93–100CrossRefGoogle Scholar
  23. 23.
    Jia G, Belli M, Blasi M, Marchetti A, Rosamilia S, Sansone U (2001) Determination of 210Pb and 210Po in mineral and biological environmental samples. J Radioanal Nucl Chem 247:491–499CrossRefGoogle Scholar
  24. 24.
    Begy RC, Cosma C, Timar A (2009) Recent changes in Red Lake (Romania) sedimentation rate determined from depth profiles of 210Pb and 137Cs radioisotopes. J Environ Radioact 100(8):644–648CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.Faculty of Environmental Science and Engineering“Babes-Bolyai” UniversityCluj-NapocaRomania

Personalised recommendations