Journal of Radioanalytical and Nuclear Chemistry

, Volume 302, Issue 3, pp 1421–1424 | Cite as

Estimation of free acidity in some hydrolysable metal ions present in reprocessing streams by fiber optic aided spectrophotometry

  • S. Ganesh
  • P. Velavendan
  • N. K. Pandey
  • U. Kamachi Mudali
  • R. Natarajan


A fiber optic aided spectrophotometric technique has been developed for the determination of free acidity in nuclear fuel reprocessing streams. In this method, nitric acid forms yellow colour complex with chrome azurol s. The system obeys Lambert–Beer’s law at 542 nm in the range of acidity 4–14 M. The molar absorption coefficient (ε) and Sandell’s sensitivity (S) of complex are 5.23 × 103 L.mol−−1 and 1.91 × 10−4 µg/cm2 respectively. Relative standard deviation is less than 1 % and correlation coefficient is 0.999. Results of the present method are in good agreement with those obtained by the standard procedure.


Nitric acid Fiber optic aided spectrophotometry Chrome azurol s Molar absorptivity Nuclear fuel reprocessing 


  1. 1.
    Ding-Ming LI, Ling W, Li-Hua Z, Yan-Ping G, Ling MU, Ji-Zong WU (2013) J Nucl Radiochem 35:96–105Google Scholar
  2. 2.
    Baumann EW, Torrey BHT (1984) Anal Chem 56:682–685CrossRefGoogle Scholar
  3. 3.
    SoundarRajan SC (1987) Talanta 34:729–730CrossRefGoogle Scholar
  4. 4.
    Scargill D, Waterman MJ, Kurucz AS, Hilton TS (1984) Report AERE-M3323Google Scholar
  5. 5.
    Mayankutty PC, Ravi S, Nadkarni MN (1982) J Radioanal Nucl Chem 68:145–150CrossRefGoogle Scholar
  6. 6.
    Murthy BN, Krishna KG, Lingaiah L, Yadav RB, Gopalan B, Syamsunder S (2001) Derivation of a general equation for concentration of uranyl nitrate pure solution in terms of density and free acidity and its application to process samples. Proceedings NUCAR-2001, Feb. 7–10, Pune, pp 154–155Google Scholar
  7. 7.
    Charrin N, Moisy Ph, Blanc P (2000) Radiochim Acta 88:445–451Google Scholar
  8. 8.
    Botts JL, Raridon RJ, Costanzo DA (1978) Technical report ORNL/TM-6491. Oak Ridge National Laboratory, Oak Ridge 37830Google Scholar
  9. 9.
    Kumar S, Koganti SB (1998) J Nucl Sci Technol 35:309–312CrossRefGoogle Scholar
  10. 10.
    Carey WP, DeGrandpre MD, Jorgensen BS (1989) Anal Chem 61:1674–1678CrossRefGoogle Scholar
  11. 11.
    Carey WP, DeGrandpre MD (1991) Appl Spectrosc 45:834–838CrossRefGoogle Scholar
  12. 12.
    Garrison AA, Martin MZ (1995) J Process Anal Chem 1:95Google Scholar
  13. 13.
    Martin MZ, Garrison AA (1995) J Process Anal Chem 2:127Google Scholar
  14. 14.
    Jenkins CW (2000) Technical report WSRC MS 2000-00061Google Scholar
  15. 15.
    Noire MH, Couston L, Douarre E, Pouyat D, Bouzon C, Marty P (2000) J Sol–Gel Sci Technol 17:131–136CrossRefGoogle Scholar
  16. 16.
    Kuhn KJ, Dyke JT (1996) Anal Chem 68:2890–2896CrossRefGoogle Scholar
  17. 17.
    Carey WP, Wangen LE, Dyke JT (1989) Anal Chem 61:1667–1669CrossRefGoogle Scholar
  18. 18.
    Jorgensen BS, Nekimken; HL, Carey WP, O’Rourke PE (1997) US Patent 5650331Google Scholar
  19. 19.
    Davies W, Gray W (1964) Talanta 11:1203–1211CrossRefGoogle Scholar
  20. 20.
    Ganesh S, Khan F, Ahmed MK, Pandey SK (2011) Talanta 85:958–963CrossRefGoogle Scholar
  21. 21.
    Chinnusamy A, Velavendan P, Ganesh S, Pandey NK, Kamachi Mudali U, Natarajan R (2014) J Radioanal Nucl Chem 300:115–119CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • S. Ganesh
    • 1
  • P. Velavendan
    • 1
  • N. K. Pandey
    • 1
  • U. Kamachi Mudali
    • 1
  • R. Natarajan
    • 1
  1. 1.Reprocessing Research and Development DivisionIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations