Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 303, Issue 3, pp 2361–2369 | Cite as

Development of an 111In-labeled dihydropyridine complex for L-type calcium channel imaging

  • T. Firouzyar
  • A. R. Jalilian
  • M. Shafiee-Ardestani
  • M. R. Aboudzadeh
  • Y. Fazaeli
  • F. Bolourinovin
  • M. Mirzaii
  • A. Khalaj
Article

Abstract

[111In]-DTPA-Amlodipine complex ([111In]-DTPA-AMLO) was prepared starting high purity [111In]indium chloride and conjugated DTPA-AMLO in 30 min at room temperature in acetate buffer in high radiochemical purity (>99 %, RTLC/HPLC; specific activity: 8–10 GBq/mmol). The log P, stability, biodistribution studies and imaging studies in untreated and amlodipine-pretreated rats were determined. The tracer is mostly washed out through kidneys as expected for a dihydropyridine compound. Blocking studies demonstrated high specific binding of the tracer in calcium channel-rich organs including intestine, heart and colon. SPECT images fully supported above results in normal and treated rats.

Keywords

111In Dihydropyridines Amlodipine Radiolabeling Biodistribution Blocking studies SPECT 

Notes

Acknowledgments

Authors wish to thank Ms F. Bolourinovin for chromatography experiments. This study has been funded and supported by Tehran University of Medical Sciences, Tehran, Iran; Grant No. 18308.

References

  1. 1.
    Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International union of pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425CrossRefGoogle Scholar
  2. 2.
    Terada K, Kitamura K, Kuriyama H (1987) Blocking actions of Ca+2 antagonists on the Ca+2 channels in the smooth muscle cell membrane of rabbit small intestine. Pflügers Arch 408:552–557CrossRefGoogle Scholar
  3. 3.
    Wagner JA, Sax FL, Weisman HF et al (1989) Calcium-antagonist receptors in the atrial tissue of patients with hypertrophic cardiomyopathy. N Engl J Med 320:755–761CrossRefGoogle Scholar
  4. 4.
    Mukherjee R, Hewett KW, Walker JD, Basler CG, Spinale FG (1998) Changes in L-type calcium channel abundance and function during transition to pacing-induced congestive heart failure. Cardiovasc Res 37:432–444CrossRefGoogle Scholar
  5. 5.
    Sadeghpour H, Jalilian AR, Shafiee A, Akhlaghi M, Miri R, Mirzaei M (2008) Radiosynthesis of dimethyl-2-[18F]-(fluoromethyl)-6-methyl-4-(2-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate for L-type calcium channel imaging. Radiochim Acta 96:849–853CrossRefGoogle Scholar
  6. 6.
    Valette H, Dollé F, Guenther I, Fuseau C, Coulon C, Hinnen F, Péglion JL, Crouzel C (2002) In vivo quantification of myocardial dihydropyridine binding sites: a PET study in dogs. J Nucl Med 43(9):1227–1233Google Scholar
  7. 7.
    Ke AB, Eyal S, Chung FS, Link JM, Mankoff DA, Muzi M, Unadkat JD (2013) Modeling cyclosporine A inhibition of the distribution of a P-glycoprotein PET ligand, 11C-verapamil, into the maternal brain and fetal liver of the pregnant nonhuman primate: impact of tissue blood flow and site of inhibition. J Nucl Med 54(3):437–446CrossRefGoogle Scholar
  8. 8.
    Sadeghpour H, Jalilian AR, Akhlaghi M, Kamali-dehghan M, Mirzaii M (2008) Preparation and biodistribution of [111In]-rHu Epo for erythropoietin receptor imaging. J Radioanal Nucl Chem 278:117–122CrossRefGoogle Scholar
  9. 9.
    Hnatowich DJ, Layne WW (1983) Child RL radioactive labeling of antibody: a simple and efficient method. Science 220:613–619CrossRefGoogle Scholar
  10. 10.
    McDaid DM, Deasy PB (1996) Formulation development of a transdermal drug delivery system for amlodipine base. Int J Pharm 133:271–283CrossRefGoogle Scholar
  11. 11.
    Wang S, Luo J, Lantrip DA, Waters DJ, Mathias CJ, Green MA, Fuchs PL, Low PS (1997) Design and synthesis of [111In]DTPA-folate for use as a tumor-targeted radiopharmaceutical. Bioconjug Chem 8:673–679CrossRefGoogle Scholar
  12. 12.
    Packard AB, Kronauge JF, Barbarics E, Kiani S, Treves ST (2002) Synthesis and biodistribution of a lipophilic Cu-64-labeled monocationic copper(II) complex. Nucl Med Biol 29:289–294CrossRefGoogle Scholar
  13. 13.
    United States Pharmacopoeia 28 (2005) NF 23, p 1009Google Scholar
  14. 14.
    United States Pharmacopoeia 28 (2005) NF 23, p 1895Google Scholar
  15. 15.
    Chhabra G, Chuttani K, Mishra AK, Pathak K (2011) Design and development of nanoemulsion drug delivery system of amlodipine besilate for improvement of oral bioavailability. Drug Dev Ind Pharm 37(8):907–916CrossRefGoogle Scholar
  16. 16.
    Beresford AP, McGibney D, Humphrey MJ, Macrae PV, Stopher DA (1988) Metabolism and kinetics of amlodipine in man. Xenobiotica 18(2):245–254CrossRefGoogle Scholar
  17. 17.
    Firouzyar T, Jalilian AR, Fazaeli Y, Shafiee-Ardestani M, Aboudzadeh MR, Khalaj A (2014). Preparation and preliminary biological evaluation of radiogallium-labeled DTPA-amlodipine complex for possible L-type calcium channel imaging. Radiochim Acta. doi: 10.1515/ract-2014-2260
  18. 18.
    Veeraveedu PT, Watanabe K, Ma M, Gurusamy N, Palaniyandi SS, Wen J, Prakash P, Wahed MI, Kamal FA, Mito S, Kunisaki M, Kodama M, Aizawa Y (2006) Comparative effects of pranidipine with amlodipine in rats with heart failure. Pharmacology 77(1):1–10CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • T. Firouzyar
    • 1
  • A. R. Jalilian
    • 2
  • M. Shafiee-Ardestani
    • 1
  • M. R. Aboudzadeh
    • 2
  • Y. Fazaeli
    • 2
  • F. Bolourinovin
    • 2
  • M. Mirzaii
    • 2
  • A. Khalaj
    • 1
  1. 1.Faculty of PharmacyTehran University of Medical SciencesTehranIran
  2. 2.Radiation Application Research SchoolNuclear Science and Technology Research Institute (NSTRI)TehranIran

Personalised recommendations