Skip to main content
Log in

Anticoincidence counting further improves detection limits of short-lived products by pseudo-cyclic instrumental neutron activation analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A systematic investigation was carried out on the merits and limitations of anticoincidence counting for short-lived radionuclides (t 1/2 < 75 s) used in instrumental neutron activation analysis (INAA) and pseudo-cyclic INAA (PC-INAA) methods for single as well as simultaneous multielement determinations in botanical and nutritional reference materials. The list of radionuclides of interest included: 108Ag, 110Ag, 165mDy, 20F, 75mGe, 179mHf, 86mRb, 46mSc, 77mSe, and 177mYb. Precision and accuracy of measurements were good, and detection limits were of the order of µg kg−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zeisler R, Becker DA (1987) Trans Am Nucl Soc 55:175–176

    Google Scholar 

  2. Das HA (1987) J Radioanal Nucl Chem Articles 115:159–173

    Article  CAS  Google Scholar 

  3. Landsberger S, Swift G, Neuhoff J (1990) Bio Trace Elem Res 26–27:27–32

    Article  Google Scholar 

  4. Landsberger S, De Wu (1991) Trans Am Nucl Soc 64:10–17

    Google Scholar 

  5. Landsberger S (1992) J Radioanal Nucl Chem 161:5–10

    Article  CAS  Google Scholar 

  6. Beazley PI (1993) MSc Thesis, Dalhousie University, Halifax, NS, Canada

  7. Beazley PI, Chatt A (1994) Trans Am Nucl Soc 71:28–29

    Google Scholar 

  8. Landsberger S, Peshev S (1996) J Radioanal Nucl Chem 202:201–224

    Article  CAS  Google Scholar 

  9. Deibel MA, Landsberger S, Wu D, Ehmann WD (1997) J Radioanal Nucl Chem 217:153–161

    Article  CAS  Google Scholar 

  10. Zhang W (1997) PhD Thesis, Dalhousie University, Halifax, NS, Canada

  11. Zhang WH, Chatt A (1997) Trans Am Nucl Soc 77:11–12

    Google Scholar 

  12. Lin X, Lierse Ch, Wahl W (1997) J Radioanal Nucl Chem 215:169–178

    Article  CAS  Google Scholar 

  13. Zhang WH, Chatt A (1997) Proc Intern Symp Harmonization of Health-Related Environmental Measurements using Nuclear and Isotopic Techniques. IAEA, Vienna, pp 421–433

    Google Scholar 

  14. Zhang WH, Chatt A (1998) Trans Am Nucl Soc 78:95–96

    Google Scholar 

  15. Bacchi MA, Santos LGC, De Nadai Fernandes E, Bode P, Tagliaferro FS, Franca EJ (2007) J Radioanal Nucl Chem 271:345–351

    Article  CAS  Google Scholar 

  16. Anderson DL, Cunningham WC (2008) J Radioanal Nucl Chem 276:23–28

    Article  CAS  Google Scholar 

  17. Anderson DL (2009) J Radioanal Nucl Chem 282:75–79

    Article  CAS  Google Scholar 

  18. Sullivan EI (1998) PhD Thesis, Dalhousie University, Halifax, NS, Canada

  19. Zhang WH, Chatt A (2000) Trans Am Nucl Soc 83:486–487

    Google Scholar 

  20. Serfor-Armah Y, Nyarko BJB, Holzbecher J, Akaho EHK, Osae EK, Chatt A (2003) J Radioanal Nucl Chem 256:259–262

    Article  CAS  Google Scholar 

  21. Nyarko BJB, Akaho EHK, Fletcher JJ, Zwicker B, Chatt A (2006) J Radioanal Nucl Chem 270:243–248

    Article  CAS  Google Scholar 

  22. Isaac-Olive K, Acharya R, Chatt A (2008) Talanta 77:827

    Article  CAS  Google Scholar 

  23. Zhang W, Chatt A (2009) J Radioanal Nucl Chem 282:139–143

    Article  CAS  Google Scholar 

  24. Acharya R, Chatt A (2009) J Radioanal Nucl Chem 282:991–996

    Article  CAS  Google Scholar 

  25. Menendez-Sanchez W, Zwicker B, Chatt A (2009) J Radioanal Nucl Chem 282:133–138

    Article  CAS  Google Scholar 

  26. Fukushima M, Suzuki H, Saito K, Chatt A (2009) J Radioanal Nucl Chem 282:85–89

    Article  CAS  Google Scholar 

  27. Zwicker R, Zwicker BM, Laoharojanaphand S, Chatt A (2011) J Radioanal Nucl Chem 287:211–216

    Article  CAS  Google Scholar 

  28. Acharya R, Holzbecher J, Chatt A (2012) NIM A 680:1–5

    Article  CAS  Google Scholar 

  29. Fukushima M, Chatt A (2012) J Radioanal Nucl Chem 294:471–488

    Article  CAS  Google Scholar 

  30. Isaac-Olive K, Chatt A (2012) J Radioanal Nucl Chem 294:479–486

    Article  CAS  Google Scholar 

  31. Zhang W, Chatt A (2013) J Radioanal Nucl Chem 296:495–501

    Article  CAS  Google Scholar 

  32. Fukushima M, Chatt A (2013) J Radioanal Nucl Chem 296:563–571

    CAS  Google Scholar 

  33. Hevia S, Resnizky S, Chatt A (2013) J Radioanal Nucl Chem 297:383–391

    Article  CAS  Google Scholar 

  34. Zhang W, Chatt A (2014) J Radioanal Nucl Chem 299:1777–1785

    Article  CAS  Google Scholar 

  35. Tout RE, Chatt A (1980) Anal Chimica Acta 118:341–358

    Article  CAS  Google Scholar 

  36. Ryan DE, Stuart DC, Chattopadhyay A (1978) Anal Chim Acta 100:87–93

    Article  CAS  Google Scholar 

  37. Holzbecher J, Chatt A, Ryan DE (1985) Can J Spectros 30:67–72

    CAS  Google Scholar 

  38. Anders OU (1969) Nucl Instr and Meth 68:205–208

    Article  Google Scholar 

  39. Spyrou NM, Ingle K, Ozek F (1974) In: Vogt JR, Meyer W (eds) Proc 2nd Intern Conf on Nuclear Methods in Environmental Research. Univ. of Missouri, Columbia, pp 151–158

    Google Scholar 

  40. Grass F, Westphal GP (1977) Nucl Instr Meth 140:97–108

    Article  CAS  Google Scholar 

  41. Chatt A, DeSilva KN, Holzbecher J, Stuart DC, Tout RE, Ryan DE (1981) Can J Chem 59:1660–1664

    Article  CAS  Google Scholar 

  42. DeSilva KN, Chatt A (1983) J Trace Microprobe Tech 1:307–337

    CAS  Google Scholar 

  43. Chattopadhyay A, DeSilva KN (1979) Trans Am Nucl Soc 32:185–186

    Google Scholar 

  44. DeSilva KN (1981) PhD Thesis, Dalhousie University, Halifax, Canada

  45. Currie LA (1968) Anal Chem 40:586–593

    Article  CAS  Google Scholar 

  46. Nyarko BJB, Akaho EHK, Fletcher JJ, Chatt A (2008) J Appl Rad Isotop 66:1067–1072

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thankfully acknowledge the cooperation of the Dalhousie University SLOWPOKE-2 Reactor (DUSR) facility for irradiations, the Natural Sciences and Engineering Research Council (NSERC) of Canada for Research Operating/Discovery, Major Facilities Access, and Research Network grants to AC, and the Dalhousie University Faculty of Graduate Studies for a stipend to WZ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chatt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Chatt, A. Anticoincidence counting further improves detection limits of short-lived products by pseudo-cyclic instrumental neutron activation analysis. J Radioanal Nucl Chem 302, 1201–1211 (2014). https://doi.org/10.1007/s10967-014-3540-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3540-0

Keywords

Navigation