Journal of Radioanalytical and Nuclear Chemistry

, Volume 303, Issue 1, pp 845–851 | Cite as

Depth-wise core sediment profile of tissue free and organic bound tritium in dynamic marine environment

  • Sonali P. D. Bhade
  • R. K. Singhal
  • H. Basu
  • Ajay Kumar
  • R. Karpe
  • P. J. Reddy
  • R. V. Kolekar
  • Rajvir Singh


Down core variation of tissue free and organic bound tritium in sediment cores was evaluated to assess the retention of tritium (H-3) by bottom sediment in the dynamic marine environment of Mumbai Harbour Bay. Tissue free water tritium (TFWT) was evaluated by extraction of H-3 from the sediment by extracting it in tritium free water whereas total H-3 by alkaline digestion of core sediment sample. OBT in various core fractions was evaluated by measuring the difference between total H-3 content and TFWT. Total H-3 content in the sediment core varies in the range of 0.41–8.01 Bq g−1 whereas OBT varies between 0.1 and 0.86 Bq g−1. Experimental results clearly indicate that total H-3 content in various fractions of the core sediment samples is dependent on the availability of exchangeable hydrogen which were either associated with clay minerals or organic molecule.


Tritium (H-3) Tissue free water tritium (TFWT) Organic bound tritium (OBT) Bottom sediments Organic carbon (OC) Liquid scintillation counter (LSC) 



The authors sincerely acknowledge the encouragement provided by Dr. B. N. Jagatap, Director, Chemistry Group, BARC and Dr D. N. Sharma, Director H S & E Group. Authors also acknowledge the scientific inputs provided by Dr. AVR Reddy and Dr K. S. Pradeep kumar to complete this research.


  1. 1.
    Carter MW, Moghissi AA (1977) Three decades of nuclear testing. Health Phys 33(1):215–219CrossRefGoogle Scholar
  2. 2.
    Castellano SD, Dick RP (1993) Measurement of tritium in soils. Health Phys 65(5):539–540CrossRefGoogle Scholar
  3. 3.
    Croudace IW, Warwick PE, Morris JE (2012) Evidence for the preservation of technogenic tritiated organic compounds in an estuarine sedimentary environment. Environ Sci Technol 46(11):5704–5712CrossRefGoogle Scholar
  4. 4.
    Diabaté S, Strac S (1993) Organically bound tritium. Health Phys 65(6):698–712CrossRefGoogle Scholar
  5. 5.
    Nakazawa T, Yokoyama K, Grismanovs V, Katano Y, Jitsukawa S (2002) Ab initio study on the mechanism of hydrogen release from the silicate surface in the presence of water molecule. Nuclear Mater 302:165–174CrossRefGoogle Scholar
  6. 6.
    Kumar A, Karpe R, Rout S, Joshi V, Singhal RK, Ravi PM (2013) Spatial distribution and accumulation of 226Ra, 228Ra, 40K and 137Cs in bottom sediments of Mumbai Harbour Bay. Radioanal Nucl Chem 295(2):835–839CrossRefGoogle Scholar
  7. 7.
    Kumar A, Singhal RK, Rout S, Narayanan U, Karpe R, Ravi PM (2013) Adsorption and kinetic behavior of uranium and thorium in seawater–sediment system. J Radioanal Nucl Chem 295:649–656CrossRefGoogle Scholar
  8. 8.
    Singhal RK, Venkatesh M, Wagh DN, Basu H, Chavan T, Pimple MV, Reddy AVR (2012) Determination of chronological heavy metal deposition and pollution intensity in the bottom sediments of Mumbai Harbour Bay, India using 137Cs as tracer. J Radioanal Nucl Chem 292:863–869CrossRefGoogle Scholar
  9. 9.
    Behairy AK, Chester R, Griffiths AJ, Johnson LR, Stoner JH (1975) The clay mineralogy of particulate material from some surface seawaters of the Eastern Atlantic Ocean. Mar Geol 18:45–56CrossRefGoogle Scholar
  10. 10.
    Griffin JJ, Goldberg ED (1963) Clay mineral distribution in the Pacific Ocean. In: Hill MN (ed) The sea, vol 3. Interscience, New York, pp 728–741Google Scholar
  11. 11.
    Savin SM, Epstein S (1970) The oxygen and hydrogen isotope geochemistry of clay minerals. Geochim Cosmochim Acta 34:25–42CrossRefGoogle Scholar
  12. 12.
    Lo´pez-Galindo A, Hach-Ali PF, Pushkarev AV, Lytovchenko AS, Baker JH, Pushkarova RA (2008) Tritium redistribution between water and clay minerals. Appl Clay Sci 39:151–159CrossRefGoogle Scholar
  13. 13.
    Tarasevich YI (1975) Adsorption on clay minerals. Naukova Dumka, Kiev, p 352Google Scholar
  14. 14.
    Tarasevich YI (1988) Constitution and surface chemistry of layer silicates. Naukova Dumka, Kiev, p 248Google Scholar
  15. 15.
    Jean-Baptiste P, Fourré E (2013) The distribution of tritium between water and suspended matter in a laboratory experiment exposing sediment to tritiated water. J Environ Radioact 116:193–196CrossRefGoogle Scholar
  16. 16.
    Turner A, Millward GE, Stemp M (2009) Distribution of tritium in estuarine waters: the role of organic matter. J Environ Radioact 100:890–895CrossRefGoogle Scholar
  17. 17.
    Hay MB, Stoliker DL, Davis JA, Zachara J (2011) Characterization of the intragranular water regime within subsurface sediments: pore volume, surface area, and mass transfer limitations. Water Resour Res 47:10531–10538CrossRefGoogle Scholar
  18. 18.
    Andrews WS, Ham MEJ, Bennett LGI, Grandmaison EW (2001) Modeling the dispersion of radionuclides released during reactor accidents aboard nuclear-powered vessels. J Radioanal Nucl Chem 248(3):657–662CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Sonali P. D. Bhade
    • 1
  • R. K. Singhal
    • 2
  • H. Basu
    • 2
  • Ajay Kumar
    • 3
  • R. Karpe
    • 3
  • P. J. Reddy
    • 1
  • R. V. Kolekar
    • 1
  • Rajvir Singh
    • 1
  1. 1.Radiation Safety System DivisionMod-Labs Bhabha Atomic Research CentreTrombayIndia
  2. 2.Analytical Chemistry DivisionMod-Labs Bhabha Atomic Research CentreTrombayIndia
  3. 3.Health Physics DivisionMod-Labs Bhabha Atomic Research CentreTrombayIndia

Personalised recommendations