Journal of Radioanalytical and Nuclear Chemistry

, Volume 302, Issue 2, pp 1027–1033 | Cite as

Study of gamma radiation induced damages and variation of oxygen enhancement ratio with radiation dose using Saccharomyces cerevisiae

  • Rajesha K. Nairy
  • Nagesh N. Bhat
  • K. B. Anjaria
  • B. Sreedevi
  • B. K. Sapra
  • Yerol Narayana


In the present study, an attempt has been made to quantify Oxygen Enhancement Ratio (OER) and variation of OER as a function of dose with experimental and theoretical formulations using Saccharomyces cerevisiae D7, X2180 and rad 52. The study confirms that, the variation of OER with dose depends upon type of cell and repair proficiency of cells. A theoretical model has been formulated to estimate OER values. With the help of this model, OER value for any dose can be calculated in the exponential region of the survival curve without actually extending the experiment in that dose region.


Saccharomyces cerevisiae Oxygen enhancement ratio Radiation dose Cell survival 



The authors from Mangalore University are grateful to Board of Research in Nuclear Sciences, Department of Atomic Energy, Government of India, for the financial support. Authors are thankful to Dr. D.N. Sharma, Director, HSE&G, BARC, Mr.D.A.R.Babu, Head, RP&AD, BARC, India for technical discussions, support and help. Technical assistance during the experiments by Mr. U. B. Thorat, Mr. S. Jagtap and Mr. P. J. Tondlekar are thankfully acknowledged.


  1. 1.
    da Cruz AD, Glickman BW (1997) Environ Mol Mutagen 30(4):385–395CrossRefGoogle Scholar
  2. 2.
    Kovacs E, Keresztes A (2002) Micron 33:199–210CrossRefGoogle Scholar
  3. 3.
    Ahuja S, Kumar M, Kumar P, Gupta VK, Singhal RK, Yadav A, Singh B (2014) J Radioanal Nucl Chem 300:199–212CrossRefGoogle Scholar
  4. 4.
    Chen H, Luo J, Li X, Peng L, Ru J (2013) J Radioanal Nucl Chem 298:443–447CrossRefGoogle Scholar
  5. 5.
    Ostling O, Johanson KJ (1984) Biochem Biophys Res Commun 123(1):291–298CrossRefGoogle Scholar
  6. 6.
    Löbrich M, Kühne M, Wetzel J, Rothkamm K (2000) Genes Chromosom Cancer 27(1):59–68CrossRefGoogle Scholar
  7. 7.
    Khanna KK, Jackson SP (2001) Nat Genet 27(3):247–254CrossRefGoogle Scholar
  8. 8.
    Rodemann HP, Blaese MA (2007) Semin Radiat Oncol 17(2):81–88CrossRefGoogle Scholar
  9. 9.
    Sowa M, Arthurs BJ, Estes BJ, Morgan WF (2006) EXS 96:293–301Google Scholar
  10. 10.
    Li Fengbo, Gao Zhimo, Li Xiaoyu, Fang Lejin (2014) J Radioanal Nucl Chem 299:1281–1286CrossRefGoogle Scholar
  11. 11.
    Sabol Jozef, Ralbovska Rebeka, Hudzietzova Jana (2014) J Radioanal Nucl Chem 299:849–854CrossRefGoogle Scholar
  12. 12.
    Markovic VM, Stevanovic N, Nikezic D, Pucic DF, Urosevic V (2014) J Radioanal Nucl Chem 299:1723–1730CrossRefGoogle Scholar
  13. 13.
    Kiefer J, Hubert B (1979) Radiat Res 77(3):472–478CrossRefGoogle Scholar
  14. 14.
    Zhang H, Semenza GL (2008) J Mol Med (Berl) 86(7):739–746CrossRefGoogle Scholar
  15. 15.
    Sprong D, Janssen HL, Vens C, Begg AC (2006) Int J Radiat Oncol Biol Phys 64(2):562–572CrossRefGoogle Scholar
  16. 16.
    Overgaard J, Horsman MR (1996) Semin Radiat Oncol 6(1):10–21CrossRefGoogle Scholar
  17. 17.
    Astor MB (1984) Br J Radiol 57(680):717–722CrossRefGoogle Scholar
  18. 18.
    Biaglow JE, Varnes ME, Clark EP, Epp ER (1983) Radiat Res 95(3):437–455CrossRefGoogle Scholar
  19. 19.
    Prise KM, Gillies NE, Michael BD (1999) Radiat Res 151(6):635–641CrossRefGoogle Scholar
  20. 20.
    Quintiliani M (1986) Int J Radiat Biol Relat Stud Phys Chem Med 50(4):573–594CrossRefGoogle Scholar
  21. 21.
    Michael BD, Adams GE, Hewitt HB, Jones WB (1973) Radiat Res 54(2):239–251CrossRefGoogle Scholar
  22. 22.
    Wenzl T, Wilkens JJ (2011) Radiat Oncol 6:171CrossRefGoogle Scholar
  23. 23.
    Brookins DG (1984) Geochemical aspects of radioactive waste disposal. Springer, New York, p 347CrossRefGoogle Scholar
  24. 24.
    Chapman NA, Smellie JAT (1986) Chem Geol 55:167–173CrossRefGoogle Scholar
  25. 25.
    Jiang MY, Ohnuki T, Yamasaki S, Tanaka K, Utsunomiya S (2013) J Radioanal Nucl Chem 295:2283–2287CrossRefGoogle Scholar
  26. 26.
    Linnane AW, Haslam JM, Lukins HB, Nagley P (1972) Ann Rev Microbiol 41:333–369Google Scholar
  27. 27.
    Attix FH (1986) Introduction to radiological physics and radiation dosimetry, a Wiley-Interscience Publication. Wiley, New YorkCrossRefGoogle Scholar
  28. 28.
    Spinks JWT, Woods RJ (1976) An introduction to radiation chemistry, 2nd edn. Wiley, New YorkGoogle Scholar
  29. 29.
    Malathi N, Sahoo P, Praveen K, Murali N (2013) J Radioanal Nucl Chem 298:963–972CrossRefGoogle Scholar
  30. 30.
    Fricke H, Hart EJ (1966) In: Attix FH, Roesch WC (eds) Radiation dosimetry, vol II. Academy Press, New YorkGoogle Scholar
  31. 31.
    Pearson J, Jan O, Wariner A, Miller GE, Nilsson M (2013) J Radioanal Nucl Chem 298:1401–1409CrossRefGoogle Scholar
  32. 32.
    Reddy NM, Rao BS (1981) Radiat Environ Biophys 19(3):187–195CrossRefGoogle Scholar
  33. 33.
    Lea DE (1946) Actions of radiations on living cells. Cambridge University Press, CambridgeGoogle Scholar
  34. 34.
    Joseph P, Acharya S, Sanjeev G, Bhat NN, Narayana Y (2011) J Radioanal Nucl Chem 290:209–214CrossRefGoogle Scholar
  35. 35.
    Ling CC, Spiro IJ, Mitchell J, Stickler R (1985) Int J Radiat Oncol Biol Phys 11(7):1367–1373CrossRefGoogle Scholar
  36. 36.
    Roots R, Chatterjee A, Chang P, Lommel L, Blakely EA (1985) Int J Radiat Biol Relat Stud Phys Chem Med 47(2):157–166CrossRefGoogle Scholar
  37. 37.
    Hirayama R, Furusawa Y, Fukawa T, Ando K (2005) J Radiat Res 46(3):325–332CrossRefGoogle Scholar
  38. 38.
    Meyn RE, van Ankeren SC, Jenkins MT (1987) Radiat Res 109(3):419–429CrossRefGoogle Scholar
  39. 39.
    Cecchini S, Girouard S, Huels MA, Sanche L, Hunting DS (2005) Biochemistry 44(6):1932–1940CrossRefGoogle Scholar
  40. 40.
    Hagen U, Wellstein H (1965) Strahlentherapie 128(4):565–576Google Scholar
  41. 41.
    Polo SE, Jackson SP (2011) Genes Dev 25(5):409–433CrossRefGoogle Scholar
  42. 42.
    Brookman KW, Lamerdin JE, Thelen MP, Hwang M, Thompson LH (1996) Mol Cell Biol 16(11):6553–6562Google Scholar
  43. 43.
    Sijbers AM, de Laat WL, Ariza RR, Biggerstaft M, Wei YF, Moggs JG, Carter KC, Shell BK, Evans E, de Jong MC, Rademakers S, de Rooij J, Jaspers NG, Hoeijmakers JH, Wood RD (1996) Cell 86(5):811–822CrossRefGoogle Scholar
  44. 44.
    Resnick MA, Martin P (1976) Mol Gen Genet 143(2):119–129CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Rajesha K. Nairy
    • 1
  • Nagesh N. Bhat
    • 2
  • K. B. Anjaria
    • 2
  • B. Sreedevi
    • 2
  • B. K. Sapra
    • 2
  • Yerol Narayana
    • 1
  1. 1.Department of Studies in PhysicsMangalore UniversityMangaloreIndia
  2. 2.RP & ADBhabha Atomic Research CenterMumbaiIndia

Personalised recommendations