Journal of Radioanalytical and Nuclear Chemistry

, Volume 303, Issue 1, pp 693–699 | Cite as

Advanced gamma spectrum processing technique applied to the analysis of scattering spectra for determining material thickness

  • Hoang Duc Tam
  • Huynh Dinh Chuong
  • Tran Thien Thanh
  • Vo Hoang Nguyen
  • Hoang Thi Kieu Trang
  • Chau Van Tao


In this work, an advanced gamma spectrum processing technique is applied to analyze experimental scattering spectra for determining the thickness of C45 heat-resistant steel plates. The single scattering peak of scattering spectra is taken as an advantage to measure the intensity of single scattering photons. Based on these results, the thickness of steel plates is determined with a maximum deviation of real thickness and measured thickness of about 4 %. Monte Carlo simulation using MCNP5 code is also performed to cross check the results, which yields a maximum deviation of 2 %. These results strongly confirm the capability of this technique in analyzing gamma scattering spectra, which is a simple, effective and convenient method for determining material thickness.


NaI(Tl) Compton scattering Thickness of material Spectrum processing technique Spectroscopy 



The authors are grateful to Vietnamese Ministry of Industry of Trade, VNUHCM-University of Science and Ho Chi Minh City University of Pedagogy for supporting this work.


  1. 1.
    Mullin SK, Hussein EMA (1994) A Compton-scatter spectrometry technique for flaw detection. Nucl Instrum Methods A 353:663–667CrossRefGoogle Scholar
  2. 2.
    Barnea G, Dick CE, Ginzburg A, Navon E, Seltzer SM (1995) A study of multiple scattering background in Compton scatter imaging. NDTE Int 28:155–162CrossRefGoogle Scholar
  3. 3.
    Shengli N, Jun Z, Liuxing H (2000) In: Proceedings of the second international workshop on EGS4. ESG4 simulation of compton scattering for nondestructive testing. Tsukuba, 8–12 August, p 216Google Scholar
  4. 4.
    Paramesh L, Venkataramaiah L, Gopala K, Sanjeeviah H (1983) Z–dependence of saturation depth for multiple backscatteing of 662 keV photons from thick samples. Nucl Instrum Methods 206:327–330CrossRefGoogle Scholar
  5. 5.
    Singh M, Singh G, Sandhu BS, Singh B (2006) Effect of detector collimator and sample thickness on 0.662 MeV multiply Compton-cattered gamma rays. Appl Radiat Isot 64:373–378CrossRefGoogle Scholar
  6. 6.
    Singh M, Singh G, Singh B, Sandhu BS (2006) Energy and intensity distributions of multiple Compton scattering of 0.279-, 0.662-, and 1.12-MeV γ rays. Phys Rev A 74:042714 (1–9)Google Scholar
  7. 7.
    Priyada P, Margret M, Ramar R, Shivaramu, Menaka M, Thilagam L, Venkataraman B, Raj B (2011) Intercomparison of gamma scattering, gammatography, and radiography techniques for mild steel nonuniform corrosion detection. Rev Sci Instrum 82:035115 (1–8)CrossRefGoogle Scholar
  8. 8.
    Ruellan H, Lépy MC, Etcheverry M, Plagnard J, Morel J (1996) A new spectra processing code applied to the analysis of 235U and 238U in the 60 to 200 keV energy range. Nucl Instrum Methods A 369:651–656CrossRefGoogle Scholar
  9. 9.
    NIST (2013) XCOM: photon cross sections database. Accessed 1 Nov 2013
  10. 10.
    Fernández JE (1991) Compton and Rayleigh double scattering of unpolarized radiation. Phys Rev A 44:4232–4248CrossRefGoogle Scholar
  11. 11.
    Hoang SMT, Yoo S, Sun GM (2010) Experimental validation of the backscattering gamma-ray spectra with the Monte Carlo code. Nucl Eng Technol. doi: 10.5516/NET.2011.43.1.013 Google Scholar
  12. 12.
    Shi HX, Chen BX, Li TZ, Yun D (2002) Precise Monte Carlo simulation of gamma-ray response functions for an NaI(Tl) detector. Appl Radiat Isot 57:517–524CrossRefGoogle Scholar
  13. 13.
    Amgarou K, Domingo C, Bouassoule T, Fernández F (2009) Monte Carlo simulation of the NaI(Tl) detector response to measure gold activated foils. Nucl Instrum Methods B 267:2944–2951CrossRefGoogle Scholar
  14. 14.
    Kovaltchouk V, Machrafi R (2011) Monte Carlo simulations of response functions for gas filled and scintillator detectors with MCNPX code. Ann Nucl Energy 38:788–793CrossRefGoogle Scholar
  15. 15.
    Baccouche S, Al-Azmi D, Karunakara N, Trabelsi A (2012) Application of the Monte Carlo method for the efficiency calibration of CsI and NaI detectors for gamma-ray measurements from terrestrial samples. Appl Radiat Isot 70:227–232CrossRefGoogle Scholar
  16. 16.
    Casanovas R, Morant JJ, Salvadó M (2012) Temperature peak-shift correction methods for NaI(Tl) and LaBr 3(Ce) gamma-ray spectrum stabilisation. Radiat Meas 47:588–595CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Hoang Duc Tam
    • 1
    • 2
  • Huynh Dinh Chuong
    • 3
  • Tran Thien Thanh
    • 2
  • Vo Hoang Nguyen
    • 2
  • Hoang Thi Kieu Trang
    • 2
  • Chau Van Tao
    • 2
  1. 1.Faculty of PhysicsHo Chi Minh City University of PedagogyHo Chi Minh CityVietnam
  2. 2.Faculty of Physics and Engineering PhysicsVNUHCM-University of ScienceHo Chi Minh CityVietnam
  3. 3.Nuclear Technique LaboratoryVNUHCM-University of ScienceHo Chi Minh CityVietnam

Personalised recommendations