Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 302, Issue 1, pp 139–147 | Cite as

EB-radiolysis of carbamazepine: in pure-water with different ions and in surface water

  • Ming Zheng
  • Gang Xu
  • Jingcheng Pei
  • Xiangxin He
  • Peijun Xu
  • Ning Liu
  • Minghong Wu
Article

Abstract

The electron beam (EB) radiolysis characteristics of carbamazepine (CBZ) in pure-water with different ions and that in surface water were studied in this paper. It suggested that the ·OH, ·H and e aq all played roles on CBZ EB degradation, and the ·OH played the vital role. Acidic solution was favorable for CBZ degradation, while alkaline environment inhibited it. HSO4 and SO3 2− enhanced the CBZ degradation, but CO3 2−, NO2 , NO3 NH4 + and Cl inhibited. In surface water, the EB-radiolysis was an effective way to degrade CBZ; and CBZ might evolve in three different ways during EB radiation: reduction by e aq and ·H (intermediate 10,11-dihydrocarbamazepine (I)), oxidization by ·OH (intermediates 10,11-dihydro-10-11-expoxycarbamazepine (II) and 2(3)-hydroxycarbamazepine (III)) and hydration into 10,11-dihydro-10-hydroxycarbamazepine (IV) and finally the intermediates were all mineralized into CO2, H2O, N2 and NH4 +. All the results contribute to study the EB-radiolysis of pharmaceuticals in surface water.

Keywords

Carbamazepine (CBZ) Electron beam radiolysis Ions Surface water 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 11175112, 11025526, 41173120, 11305099 and 41273141).

References

  1. 1.
    Loos R, Locoro G, Comero S, Contini S, Schwesig D, Werres F, Balsaa P, Gans O, Weiss S, Blaha L, Bolchi M, Gawlik BM (2010) Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res 44(14):4115–4126. doi: 10.1016/j.watres.2010.05.032 CrossRefGoogle Scholar
  2. 2.
    Kosjek T, Andersen HR, Kompare B, Ledin A, Heath E (2009) Fate of carbamazepine during water treatment. Environ Sci Technol 43(16):6256–6261CrossRefGoogle Scholar
  3. 3.
    Zhou H, Wu C, Huang X, Gao M, Wen X, Tsuno H, Tanaka H (2010) Occurrence of selected pharmaceuticals and caffeine in sewage treatment plants and receiving rivers in Beijing, China. Water Environ Res 82(11):2239–2248. doi: 10.2175/106143010x12681059116653 CrossRefGoogle Scholar
  4. 4.
    Xue W, Wu C, Xiao K, Huang X, Zhou H, Tsuno H, Tanaka H (2010) Elimination and fate of selected micro-organic pollutants in a full-scale anaerobic/anoxic/aerobic process combined with membrane bioreactor for municipal wastewater reclamation. Water Res 44(20):5999–6010. doi: 10.1016/j.watres.2010.07.052 CrossRefGoogle Scholar
  5. 5.
    Keen OS, Baik S, Linden KG, Aga DS, Love NG (2012) Enhanced biodegradation of carbamazepine after UV/H2O2 advanced oxidation. Environ Sci Technol 46(11):6222–6227. doi: 10.1021/es300897u CrossRefGoogle Scholar
  6. 6.
    Golan-Rozen N, Chefetz B, Ben-Ari J, Geva J, Hadar Y (2011) Transformation of the recalcitrant pharmaceutical compound carbamazepine by Pleurotus ostreatus: role of cytochrome P450 monooxygenase and manganese peroxidase. Environ Sci Technol 45(16):6800–6805. doi: 10.1021/es200298t CrossRefGoogle Scholar
  7. 7.
    Rodriguez-Rodriguez CE, Marco-Urrea E, Caminal G (2010) Degradation of naproxen and carbamazepine in spiked sludge by slurry and solid-phase Trametes versicolor systems. Bioresour Technol 101(7):2259–2266. doi: 10.1016/j.biortech.2009.11.089 CrossRefGoogle Scholar
  8. 8.
    Kang SI, Kang SY, Hur HG (2008) Identification of fungal metabolites of anticonvulsant drug carbamazepine. Appl Microbiol Biotechnol 79(4):663–669. doi: 10.1007/s00253-008-1459-5 CrossRefGoogle Scholar
  9. 9.
    Marco-Urrea E, Radjenovic J, Caminal G, Petrovic M, Vicent T, Barcelo D (2010) Oxidation of atenolol, propranolol, carbamazepine and clofibric acid by a biological Fenton-like system mediated by the white-rot fungus Trametes versicolor. Water Res 44(2):521–532. doi: 10.1016/j.watres.2009.09.049 CrossRefGoogle Scholar
  10. 10.
    Ternes TA, Meisenheimer M, McDowell D, Sacher F, Brauch HJ, Haist-Gulde B, Preuss G, Wilme U, Zulei-Seibert N (2002) Removal of pharmaceuticals during drinking water treatment. Environ Sci Technol 36(17):3855–3863. doi: 10.1021/es015757k CrossRefGoogle Scholar
  11. 11.
    Chiron S, Minero C, Vione D (2006) Photodegradation processes of the antiepileptic drug carbamazepine, relevant to estuarine waters. Environ Sci Technol 40(19):5977–5983CrossRefGoogle Scholar
  12. 12.
    Doll TE, Frimmel FH (2005) Removal of selected persistent organic pollutants by heterogeneous photocatalysis in water. Catal Today 101(3–4):195–202. doi: 10.1016/j.cattod.2005.03.005 CrossRefGoogle Scholar
  13. 13.
    Kim I, Yamashita N, Tanaka H (2009) Photodegradation of pharmaceuticals and personal care products during UV and UV/H2O2 treatments. Chemosphere 77(4):518–525. doi: 10.1016/j.chemosphere.2009.07.041 CrossRefGoogle Scholar
  14. 14.
    Vogna D, Marotta R, Andreozzi R, Napolitano A, d’Ischia M (2004) Kinetic and chemical assessment of the UV/H2O2 treatment of antiepileptic drug carbamazepine. Chemosphere 54(4):497–505. doi: 10.1016/S0045-6535(03)00757-4 CrossRefGoogle Scholar
  15. 15.
    Hu L, Martin HM, Arce-Bulted O, Sugihara MN, Keating KA, Strathmann TI (2009) Oxidation of carbamazepine by Mn(VII) and Fe(VI): reaction kinetics and mechanism. Environ Sci Technol 43(2):509–515CrossRefGoogle Scholar
  16. 16.
    Tixier C, Singer HP, Oellers S, Muller SR (2003) Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environ Sci Technol 37(6):1061–1068. doi: 10.1021/es025834r CrossRefGoogle Scholar
  17. 17.
    Xu G, Bu T, Wu M, Zheng J, Liu N, Wang L (2011) Electron beam induced degradation of clopyralid in aqueous solutions. J Radioanal Nucl Chem 288(3):759–764. doi: 10.1007/s10967-011-0986-1 CrossRefGoogle Scholar
  18. 18.
    Unob F, Hagege A, Lakkis D, Leroy M (2003) Degradation of organolead species in aqueous solutions by electron beam irradiation. Water Res 37(9):2113–2117. doi: 10.1016/S0043-1354(02)00620-6 CrossRefGoogle Scholar
  19. 19.
    Poster DL, Chaychian M, Neta P, Huie RE, Silverman J, Al-Sheikhly M (2003) Degradation of PCBs in a marine sediment treated with ionizing and UV radiation. Environ Sci Technol 37(17):3808–3815. doi: 10.1021/es030363 CrossRefGoogle Scholar
  20. 20.
    Kwon M, Yoon Y, Cho E, Jung Y, Lee BC, Paeng KJ, Kang JW (2012) Removal of iopromide and degradation characteristics in electron beam irradiation process. J Hazard Mater 227–228:126–134. doi: 10.1016/j.jhazmat.2012.05.022 CrossRefGoogle Scholar
  21. 21.
    Sun W, Chen L, Tian J, Wang J, He S (2013) Degradation of a monoazo dye Alizarin Yellow GG in aqueous solutions by gamma irradiation: decolorization and biodegradability enhancement. Radiat Phys Chem 83:86–89. doi: 10.1016/j.radphyschem.2012.10.014 CrossRefGoogle Scholar
  22. 22.
    Ghanbari F, Ghoorchi T, Shawrang P, Mansouri H, Torbati-Nejad NM (2012) Comparison of electron beam and gamma ray irradiations effects on ruminal crude protein and amino acid degradation kinetics, and in vitro digestibility of cottonseed meal. Radiat Phys Chem 81(6):672–678. doi: 10.1016/j.radphyschem.2012.02.014 CrossRefGoogle Scholar
  23. 23.
    Taghinejad-Roudbaneh M, Ebrahimi SR, Azizi S, Shawrang P (2010) Effects of electron beam irradiation on chemical composition, antinutritional factors, ruminal degradation and in vitro protein digestibility of canola meal. Radiat Phys Chem 79(12):1264–1269. doi: 10.1016/j.radphyschem.2010.07.007 CrossRefGoogle Scholar
  24. 24.
    Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution. J Phys Chem Ref Data 17:513–886CrossRefGoogle Scholar
  25. 25.
    Shin HS, Kim YR, Ponomarev AV (2001) Influence of sulfite on radiolytic conversion of nitrate and nitrite in dilute aqueous solutions. Mendeleev Commun 1:21–23CrossRefGoogle Scholar
  26. 26.
    Guan Y-H, Ma J, Li X-C, Fang J-Y, Chen L-W (2011) Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/Peroxymonosulfate system. Environ Sci Technol 45(21):9308–9314. doi: 10.1021/es2017363 CrossRefGoogle Scholar
  27. 27.
    Nfodzo P, Choi H (2011) Sulfate radicals destroy pharmaceuticals and personal care products. Environ Eng Sci 28(8):605–609. doi: 10.1089/ees.2011.0045 CrossRefGoogle Scholar
  28. 28.
    Roshani B, Leitner NK (2011) Effect of persulfate on the oxidation of benzotriazole and humic acid by e-beam irradiation. J Hazard Mater 190(1–3):403–408. doi: 10.1016/j.jhazmat.2011.03.059 CrossRefGoogle Scholar
  29. 29.
    Mak FT, Zele SR, Cooper WJ, Kurucz CN, Waite TD, Nickelsen MG (1997) Kinetic modeling of carbon tetrachloride, chloroform and methylene chloride removal from aqueous solution using the electron beam process. Water Res 31(2):219–228. doi: 10.1016/s0043-1354(96)00264-3 CrossRefGoogle Scholar
  30. 30.
    Cooper WJ, Nickelsen MG, Green RV, Mezyk SP (2002) The removal of naphthalene from aqueous solutions using high-energy electron beam irradiation. Radiat Phys Chem 65(4–5):571–577. doi: 10.1016/s0969-806x(02)00363-8 CrossRefGoogle Scholar
  31. 31.
    Ocampo-Pérez R, Rivera-Utrilla J, Sánchez-Polo M, López-Peñalver J, Leyva-Ramos R (2011) Degradation of antineoplastic cytarabine in aqueous solution by gamma radiation. Chem Eng J 174(1):1–8CrossRefGoogle Scholar
  32. 32.
    Velo Gala I, López Peñalver JJ, Sánchez Polo M, Rivera Utrilla J (2013) Degradation of X-ray contrast media diatrizoate in different water matrices by gamma irradiation. J Chem Technol Biotechnol 88(7):1336–1343CrossRefGoogle Scholar
  33. 33.
    Xu G, Liu N, Wu MH, Bu TT, Zheng M (2013) The photodegradation of clopyralid in aqueous solutions: effects of light sources and water constituents. Ind Eng Chem Res 52(29):9770–9774. doi: 10.1021/ie302844v CrossRefGoogle Scholar
  34. 34.
    Li J, Dodgen L, Ye Q, Gan J (2013) Degradation kinetics and metabolites of carbamazepine in soil. Environ Sci Technol 47(8):3678–3684. doi: 10.1021/es304944c CrossRefGoogle Scholar
  35. 35.
    Miao X-S, Metcalfe CD (2003) Determination of carbamazepine and its metabolites in aqueous samples using liquid chromatography − electrospray tandem mass spectrometry. Anal Chem 75(15):3731–3738. doi: 10.1021/ac030082k CrossRefGoogle Scholar
  36. 36.
    Miao XS, Yang JJ, Metcalfe CD (2005) Carbamazepine and its metabolites in wastewater and in biosolids in a municipal wastewater treatment plant. Environ Sci Technol 39(19):7469–7475CrossRefGoogle Scholar
  37. 37.
    Lam MW, Mabury SA (2005) Photodegradation of the pharmaceuticals atorvastatin, carbamazepine, levofloxacin, and sulfamethoxazole in natural waters. Aquat Sci 67(2):177–188. doi: 10.1007/s00027-004-0768-8 CrossRefGoogle Scholar
  38. 38.
    Breton H, Cociglio M, Bressolle F, Peyriere H, Blayac JP, Hillaire-Buys D (2005) Liquid chromatography-electrospray mass spectrometry determination of carbamazepine, oxcarbazepine and eight of their metabolites in human plasma. J Chromatogr, B: Analyt Technol Biomed Life Sci 828(1–2):80–90. doi: 10.1016/j.jchromb.2005.09.019 CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.School of Environmental and Chemical Engineering, Shanghai Applied Radiation InstituteShanghai UniversityShanghaiPeople’s Republic of China
  2. 2.School of Environment and ArchitectureUniversity of Shanghai for Science and TechnologyShanghaiPeople’s Republic of China

Personalised recommendations