Journal of Radioanalytical and Nuclear Chemistry

, Volume 302, Issue 1, pp 467–476 | Cite as

Isomeric yield ratios of 148Pm from the natSm(γ, x) and the natNd(p, xn) reactions

  • Sung-Chul Yang
  • Guinyun Kim
  • M. Zaman
  • Kwangsoo Kim
  • Tae-Yung Song
  • Young-Ouk Lee
  • Sung Gyun Shin
  • Young-Uk Key
  • Moo-Hyun Cho
  • Duc Khue Pham
  • Van Do Nguyen
  • Haladhara Naik
  • Tae-Ik Ro


The independent isomeric yield ratios of 148Pm from the natSm(γ, x) reaction at the end-point bremsstrahlung energy of 45–64 MeV have been determined using an off-line γ-ray spectrometric technique at the 100 MeV electron linac of Pohang accelerator laboratory, Pohang, Korea. We also have determined the isomeric yield ratios of 148Pm from the natNd(p,xn) reactions in the proton energy of 5.08–44.72 MeV by a stacked-foil activation and an off-line γ-ray spectrometric techniques at the MC-50 cyclotron of the Korean Institute of Radiological and Medical Sciences, Korea. The determined isomeric yield ratios of 148Pm were compared with literature data and theoretical values estimated by the TALYS 1.4. The present data along with the similar data from literature at other energies shows that the isomeric yield ratio of 148Pm increases with the excitation energy both in the natSm(γ, x) and the natNd(p, xn) reactions. The isomeric yield ratios of 148Pm from the natNd(p, xn) reactions are always higher than those from the natSm(γ, x) reactions at the same excitation energy, which indicate the role of input angular momentum besides excitation energy.


Isomeric yield ratio of 148Pm natSm(γ, x) and natNd(p, xn) reactions Off-line γ-ray spectrometric technique Stacked-foil activation technique TALYS calculation 



The authors are thankful to the staff of electron linac at Pohang Accelerator Laboratory (PAL) and the MC-50 Cyclotron in the Korea Institute of Radiological and Medical Science (KIRAMS) for the excellent operation and their support to carry out the experiments. This research partly was supported by the National Research Foundation of Korea through a grant provided by the Korean Ministry of Science, ICT and Future Planning (MSIP) (NRF-2013R1A2A2A01067340), by the Institutional Activity Program of Korea Atomic Energy Research Institute (KAERI), and by the Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.04-2012.21.


  1. 1.
    Wagemans C (1990) The nuclear fission process. CRC, LondonGoogle Scholar
  2. 2.
    Vandenbosch R, Huizenga JR (1973) Nuclear fission. Academic, New YorkGoogle Scholar
  3. 3.
    Huizenga JR, Vandenbosch R (1960) Phys Rev 120:1305CrossRefGoogle Scholar
  4. 4.
    Vandenbosch R, Huizenga JR (1960) Phys Rev 120:1313CrossRefGoogle Scholar
  5. 5.
    Blann M (1975) Ann Rev Nucl Sci 25:123CrossRefGoogle Scholar
  6. 6.
    Chadwick MB, Oblozinsky P, Herman M, Greene NM, McKnight RD, Smith DL, Young PG, MacFarlane RE, Hale GM, Frankle SC, Kahler AC, Kawano T, Little RC, Madland DG, Moller P, Mosteller RD, Page PR, Talou P, Trellue H, White MC, Wilson WB, Arcilla R, Dunford CL, Mughabghab SF, Pritychenko B, Rochman D, Sonzogni AA, Lubitz CR, Trumbull TH, Weinman JP, Brown DA, Cullen DE, Heinrichs DP, McNabb DP, Derrien H, Dunn ME, Larson NM, Leal LC, Carson AD, Block RC, Briggs JB, Cheng ET, Huria HC, Zerkle ML, Kozier KS, Courcelle A, Pronyaev V, van der Marck SC (2006) Nucl Data Sheets 107:2931CrossRefGoogle Scholar
  7. 7.
    Shibata K, Iwamoto O, Nakagawa T, Iwamoto N, Ichihara A, Kunieda S, Chiba S, Otuka N, Katakura J (2011) J Nucl Sci Technol 48:1CrossRefGoogle Scholar
  8. 8.
    Koning AJ, Bauge E, Dean CJ, Dupont E, Fischer U, Forrest RA, Jacqmin R, Leeb H, Kellett MA, Mills RW, Nordborg C, Pescarini M, Rugama Y, Rullhusen P (2011) J Korean Phys Soc 59:1057CrossRefGoogle Scholar
  9. 9.
    Ge ZG, Zhuang YX, Liu TJ, Zhang JS, Wu HC, Zhao ZX, Xia HH (2011) J Korean Phys Soc 59:1052CrossRefGoogle Scholar
  10. 10.
    IAEA-EXFOR Database. Version of November 20, 2013
  11. 11.
    Haustein PE, Voigt AF (1971) J Inorg Nucl Chem 33:289CrossRefGoogle Scholar
  12. 12.
    Hoang DL, Tran DT, Truong TA, Phan A (1987) Bulgarian J Phys 14:152Google Scholar
  13. 13.
    Davydov MG, Magera VG, Trukhov AV (1987) At Energ 62:236Google Scholar
  14. 14.
    Palvanov SR, Razhabov O (1999) At Energ 87:533CrossRefGoogle Scholar
  15. 15.
    Mazur VM, Zheltonozhsky VA, Bigan ZM (1995) Yad Fiz 58:970Google Scholar
  16. 16.
    Kolev D (1998) Appl Radiat Isot 49:989CrossRefGoogle Scholar
  17. 17.
    Belov AG, Gangrsky YuP, Tonchev AP, Balabanov NP (1995) Yad Fiz 59:389Google Scholar
  18. 18.
    Belov AG, Gangrsky YuP, Melnikova LM, Ponomarev VYu, Tsoneva N, Stoyanov Ch, Tonchev AP, Balabanov N (2001) Yad Fiz 64:1987Google Scholar
  19. 19.
    Palvanov SR, Mamayusupova MI (2007) At Energy 103:827CrossRefGoogle Scholar
  20. 20.
    Palvanov SR, Rakhmonov Zh, Kajumov M, Mamayusupova MI, Zhuraev O (2011) Bull Russ Acad Sci Phys 75:222CrossRefGoogle Scholar
  21. 21.
    Curzio G, Sona P (1968) IL Nuovo Cimento 54:319CrossRefGoogle Scholar
  22. 22.
    Grissom JT, Koehler DR, Alford WL (1966) Phys Rev 142:725CrossRefGoogle Scholar
  23. 23.
    Prasad PR, Rao JR, Kondaiah E (1969) Nucl Phys A 125:57CrossRefGoogle Scholar
  24. 24.
    Kong X, Wang Y, Yang J (1998) Appl Radiat Isot 49:1529CrossRefGoogle Scholar
  25. 25.
    Filatenkov AA, Chuvaev SV, Aksenov VN, Jakovlev VA (1999) Khlopin Radium Institute Report RI-252Google Scholar
  26. 26.
    Aumann DC, Gükel W (1977) Phys Rev C 16:160CrossRefGoogle Scholar
  27. 27.
    Steyn GF, Vermeulen C, Nortier FM, Szelecsényi F, Kovács Z, Qaim SM (2006) Nucl Instrum Methods B 252:149CrossRefGoogle Scholar
  28. 28.
    Glebov NK, Tulinov AF, Khodyrev VA, Chuvilskaja TV, Shavtvalov LJ, Shirokova AA (1991) Bull Russ Acad Sci Phys 55:133Google Scholar
  29. 29.
    Hilgers K, Sudár S, Qaim SM (2007) Phys Rev C 76:064601CrossRefGoogle Scholar
  30. 30.
    Lebeda O, Lozza V, Schrock P, Stursa J, Zuber K (2012) Phys Rev C 85:014602CrossRefGoogle Scholar
  31. 31.
    Koning AJ, Hilaire S, Duijvestijn MC (2007) TALYS-1.4. In: Proceedings of the international conference on nuclear data for science and technology, Nice, France. Bersillon O, Gunsing F, Bauge E, Jacqmin R, Leray S (eds) 2008 EDP Sciences, Paris, pp 211–214Google Scholar
  32. 32.
    Kim GN, Ahmed H, Machrafi R, Son D, Skoy V, Lee YS, Kang H, Cho M-H, Ko IS, Namkung W (2003) J Korean Phys Soc 43:479Google Scholar
  33. 33.
    Nguyen VD, Pham DK, Tran DT, Phung VD, Lee YS, Lee HS, Cho MH, Ko IS, Namkung W, Meaze AKMMH, Devan K, Kim GN (2006) J Korean Phys Soc 48:382Google Scholar
  34. 34.
    Rahman MS, Kim KS, Lee MW, Kim GN, Oh Y, Lee HS, Cho MH, Ko IS, Namkung W, Nguyen VD, Pham DK, Kim TT, Ro TI (2010) J Radioanal Nucl Chem 283:519CrossRefGoogle Scholar
  35. 35.
    Khandaker MU, Meaze AKMH, Kim K, Son D, Kim GN (2006) J Korean Phys Soc 48:821Google Scholar
  36. 36.
    Uddin MS, Khandaker MU, Kim KS, Lee YS, Lee MW, Kim GN (2008) Nucl Instrum Methods B 266:13CrossRefGoogle Scholar
  37. 37.
    Khandaker MU, Kim K, Lee MW, Kim KS, Kim GN, Cho YS, Lee YO (2009) Appl Radiat Isot 67:1341CrossRefGoogle Scholar
  38. 38.
    Ziegler JF, Zeiler MD, Biersack JP (2008) SRIM-2008.04.
  39. 39.
    Thierens H, De Frenne D, Jacobs E, De Clercq A, D’hondt P, Deruytter AJ (1976) Phys Rev C 14:1058CrossRefGoogle Scholar
  40. 40.
    John SH, Gregg WM, Michael LF, Michael RJ, Russell CJ, Joe WD, Joshua PF, Denise BP, Laurie SW, William MJ (2008) MCNPX extension Version 2.6.0, LA-UR-08-2216Google Scholar
  41. 41.
    Tuli JK (2011) Nuclear wallet cards.
  42. 42.
    Firestone RB, Ekstrom LP (2004) Table of radioactive isotopes, version 2.1
  43. 43.
    Blachot J, Fiche C (1981) Ann Phys Suppl 6:3Google Scholar
  44. 44.
    Cavinato M, Fabrici E, Gadioli E, Erba EG, Vergani P, Crippa M, Colombo G, Redaelli I, Ripamonti M (1995) Phys Rev C 52:2577CrossRefGoogle Scholar
  45. 45.
    Haller IB, Rudstam G (1961) J Inorg Nucl Chem 19:1CrossRefGoogle Scholar
  46. 46.
    Vanska R, Rieppo R (1981) Nucl Instrum Methods 179:525Google Scholar
  47. 47.
    Bhat MR (2000) Nucl Data Sheets 89:797Google Scholar
  48. 48.
    Debertin K, Schötzig U (1979) Nucl Instrum Methods 158:471CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Sung-Chul Yang
    • 1
    • 2
  • Guinyun Kim
    • 1
  • M. Zaman
    • 1
  • Kwangsoo Kim
    • 1
  • Tae-Yung Song
    • 2
  • Young-Ouk Lee
    • 2
  • Sung Gyun Shin
    • 3
  • Young-Uk Key
    • 3
  • Moo-Hyun Cho
    • 3
  • Duc Khue Pham
    • 4
  • Van Do Nguyen
    • 4
  • Haladhara Naik
    • 1
    • 5
  • Tae-Ik Ro
    • 6
  1. 1.Department of PhysicsKyungpook National UniversityDaeguRepublic of Korea
  2. 2.Nuclear Data CenterKorea Atomic Energy Research InstituteDaejeonRepublic of Korea
  3. 3.Division of Advanced Nuclear EngineeringPohang University of Science and TechnologyPohangRepublic of Korea
  4. 4.Institute of PhysicsVietnam Academy of Science and TechnologyHanoiViet Nam
  5. 5.Radiochemistry DivisionBhabha Atomic Research CentreMumbaiIndia
  6. 6.Department of PhysicsDong-A UniversityBusanRepublic of Korea

Personalised recommendations