Advertisement

Radiochemical methodologies applied to determination of zirconium isotopes in low-level waste samples from nuclear power plants

  • T. C. Oliveira
  • R. P. G. Monteiro
  • G. F. Kastner
  • F. Bessueille-Barbier
  • A. H. Oliveira
Article

Abstract

The 93Zr determination in low-level radioactive wastes generated at nuclear power plants is an important issue for waste disposal purpose. This paper describes an analytical methodology developed for 93Zr determination based on selective separation using extractive resins associated with inductively coupled plasma mass spectrometry (ICP-MS) and liquid scintillation counting (LSC) measurements. The 93Zr results obtained for waste samples were in a good agreement for both techniques and the detection limits of 0.045 μg L−1 and 0.05 Bq L−1 were obtained for ICP-MS and LSC techniques respectively.

Keywords

Zirconium Selective separation method LSC ICP-MS 

Notes

Acknowledgments

The authors are very grateful to Eletrobrás Termonuclear, CDTN and SCA/CNRS for its collaboration and to the work supported by CNPq.

References

  1. 1.
    Electric Power Research Institute (1996) Low-level waste characterization guidelines. EPRI Pleasant Hill (EPRI-TR-1072)Google Scholar
  2. 2.
    IAEA (2009) Nuclear Energy Series Determination and use of scaling factors for waste characterization in nuclear power plants. IAEA, Vienna (No. NW-T-1.18)Google Scholar
  3. 3.
    Environmental Protection Agency (2006) Inventory of radiological methodologies for sites contaminated with radioactive materials. Montgomery, US (EPA 402-R-06-007)Google Scholar
  4. 4.
    Vértes A, Nagy S, Klencsár Z, Molnár GL (2003) Handbook of nuclear chemistry, vol 2. Kluwer Academic Publishers, DordrechtGoogle Scholar
  5. 5.
    Cassete P et al (2009) Determination of 93Zr decay scheme and half-life. Appl Radiat Isot 56:41–46Google Scholar
  6. 6.
    Connick RE, McVey WH (1949) The aqueous chemistry of zirconium. J Am Chem Soc 71(9):3182–3191CrossRefGoogle Scholar
  7. 7.
    Espartero AG, Suárez JA, Rodríguez M, Pina G (2002) Radiochemical analysis of 93Zr. Appl Radiat Isot 56:41–46CrossRefGoogle Scholar
  8. 8.
    Oliveira TC, Monteiro RPG, Oliveira AH (2011) A selective separation method for 93Zr in radiochemical analysis of low and intermediate level wastes from nuclear power plants. J Radioanal Nucl Chem 289:497–501CrossRefGoogle Scholar
  9. 9.
    Warwick PE et al (2006) Environmental Radiochemical Analysis. In: The proceedings of the 10th International Symposium on Environmental Radiochemical Analysis Held in Oxford, UK. The Royal Society of Chemistry, London, pp 169–175Google Scholar
  10. 10.
    Chao JH, Tseng CL, Lee CJ (2002) Sequential extraction separation for determination of technetium-99 in radio wastes by ICP-MS. J Radioanal Nucl Chem 251(1):105–112CrossRefGoogle Scholar
  11. 11.
    Reis AS Jr, Temba ESC, Kastner GF, Monteiro RPG (2011) Combined procedure using radiochemical separation of plutonium, americium, and uranium radionuclides for alpha-spectrometry. J Radioanal Nucl Chem 287:567–572CrossRefGoogle Scholar
  12. 12.
    U.S. EPA Method 200.8 (1994) Determination of trace elements in waters and wastes by ICP-MS, Revision 5.4, 1994: http://water.epa.gov/scitech/methods/cwa/bioindicators/upload/2007_07_10_methods_method_200_8.pdf
  13. 13.
    Currie LA (1968) Limits for qualitative detection and quantitative determination. Anal Chem 40:586–593CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • T. C. Oliveira
    • 1
  • R. P. G. Monteiro
    • 2
  • G. F. Kastner
    • 2
  • F. Bessueille-Barbier
    • 3
  • A. H. Oliveira
    • 1
  1. 1.Departamento de Engenharia NuclearUFMG/DENBelo HorizonteBrazil
  2. 2.Centro de Desenvolvimento da Tecnologia NuclearCDTN/CNENBelo HorizonteBrazil
  3. 3.Institute des Sciences Analytiques/CNRS UMRVilleurbanneFrance

Personalised recommendations