Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 302, Issue 1, pp 631–646 | Cite as

Experimental determination of Q 0 factors and effective resonance energies with a multi-channel approach: the α-vector method

  • F. Farina Arboccò
  • P. Vermaercke
  • K. Smits
  • L. Sneyers
  • K. Strijckmans
Article

Abstract

Some of the Q 0 and Ē r factors from the 2003 to 2012 recommended k 0-datasets were adopted from older literature (Lit; before 1984), at the time of the launch of the k 0-method and have associated uncertainties of 10 %. The Ē r factors on the other hand, were derived analytically in 1979 and 1987 by employing the Breit–Wigner resonance representation, but in 1984 a multi-channel method was proposed for simultaneous Q 0 and Ē r experimental determination. In this work we assumed the α-dependence of the Ē r parameter proposed later in 1987 for a generalization of this method, which was then employed in the experimental determination of Q 0 and Ē r factors for 17 (n,γ) target isotopes on up to three channels of the BR1 reactor at the SCK-CEN (Mol, Belgium). Retrospectively, this “α-vector method” can be employed for α-calibration and it provides a practical way of averaging the experimental Q 0 (and Ē r) results from several laboratories. Our Q 0 results have 2–3 % uncertainty and are compared with the Lit elsewhere.

Keywords

Neutron Activation Analysis Q0 factor Effective resonance energy Ēr s0 factor Modified Westcott formalism k0 method 

Notes

Acknowledgments

This work would have not been possible without the help of G. Sibbens, A. Moens and J. Wagemans in providing the authors with high quality materials. Needless to say that we are in deep gratitude with the technical staff at SCK: I. Verwimp, B. Van Houdt, P. Vandycke, S. Van Bijlen and J. Leeuws for their skillful assistance during the irradiations and to E. Daniels for material preparations. We thank M. Bruggeman, F. De Corte, G. Kennedy, C. Chilian, W. De Boek, R. Van Sluijs, D. Bossus and A. Trkov for their valuable insights and important remarks.

References

  1. 1.
    Moens L, Simonits A, De Corte F, Hoste J (1979) Comparative study of measured and critically evaluated resonance integral to thermal cross-section ratios. Part I. J Radioanal Nucl Chem 54:377–390CrossRefGoogle Scholar
  2. 2.
    Jovanović S, De Corte F, Simonits A, Moens L, Vukotić P, Hoste J (1987) The effective resonance energy as a parameter in (n,γ) activation analysis with reactor neutrons. J Radioanal Nucl Chem 113:177–185CrossRefGoogle Scholar
  3. 3.
    Simonits A, Jovanović S, De Corte F, Moens L, Hoste J (1984) A method for experimental determination of effective resonance energies related to (n,γ) reactions. J Radioanal Nucl Chem 82:169–179CrossRefGoogle Scholar
  4. 4.
    Farina Arboccò F, Vermaercke P, Smits K, Sneyers L, Strijckmans K (2012) Experimental determination of k 0, Q 0, Ē r factors and neutron cross-sections for 41 isotopes of interest in neutron activation analysis. J Radioanal Nucl Chem 296:931–938CrossRefGoogle Scholar
  5. 5.
    Simonits A, De Corte F, El Nimr T, Moens L, Hoste J (1984) Comparative study of measured and critically evaluated resonance integral to thermal cross-section ratios. Part II. J Radioanal Nucl Chem Artic 81:397–415CrossRefGoogle Scholar
  6. 6.
    De Corte F, Simonits A, Wispelaere A (1989) Comparative study of measured and critically evaluated resonance integral to thermal cross section ratios, III. J Radioanal Nucl Chem 133:131–151CrossRefGoogle Scholar
  7. 7.
    Moens L, De Corte F, Wispelaere A, Hoste J, Simonits A, Elek A, Szabo E (1984) k 0-Measurements and related nuclear data compilation for (n,γ) reactor neutron activation analysis. J Radioanal Nucl Chem 82:385–452CrossRefGoogle Scholar
  8. 8.
    De Corte F, Simonits A, Wispelaere A, Elek A (1989) k0-Measurements and related nuclear data compilation for (n,γ) reactor neutron activation analysis. J Radioanal Nucl Chem 133:3–41CrossRefGoogle Scholar
  9. 9.
    De Corte F, Simonits A (1989) k0-Measurements and related nuclear data compilation for (n,γ) reactor neutron activation analysis. J Radioanal Nucl Chem 133:43–130CrossRefGoogle Scholar
  10. 10.
    De Corte F, Simonits A, Bellemans F, Freitas MC, Jovanović S, Smodiš B, Erdtmann G, Petri H, Wispelaere A (1993) Recent advances in the k0-standardization of neutron activation analysis: extensions, applications, prospects. J Radioanal Nucl Chem 169:125–158CrossRefGoogle Scholar
  11. 11.
    De Corte F, Simonits A (2003) Recommended nuclear data for use in the k 0 standardization of neutron activation analysis. At Data Nucl Data Tables 85:47–67CrossRefGoogle Scholar
  12. 12.
    Jaćimović R, De Corte F, Kennedy G, Vermaercke P, Revay Z (2014) The 2012 recommended k 0 database. J Radioanal Nucl Chem 300:589–592CrossRefGoogle Scholar
  13. 13.
    De Corte F (1987) The k0-standardization method: a move to the optimization of neutron activation analysis. PhD Thesis, Gent Universiteit, BelgiumGoogle Scholar
  14. 14.
    Rakovic M (1970) Activation analysis, 1st edn. ACADEMIA, PragueGoogle Scholar
  15. 15.
    Kolotov VP, De Corte F (2003) An electronic database with a compilation of k 0 and related data for NAA. J Radioanal Nucl Chem 257:501–508CrossRefGoogle Scholar
  16. 16.
    k0-International Scientific Committee (2012) Classic k 0 Database. International. http://www.kayzero.com/k0naa/k0naa/News/Artikelen/2012/3/25_The_IUPAC_databasa.html. Accessed 1 May 2012
  17. 17.
    Chilian C, St-Pierre J, Kennedy G (2008) Complete thermal and epithermal neutron self-shielding corrections for NAA using a spreadsheet. J Radioanal Nucl Chem 278:745–749CrossRefGoogle Scholar
  18. 18.
    Trkov A, Žerovnik G, Snoj L, Ravnik M (2009) On the self-shielding factors in neutron activation analysis. Nucl Instrum Methods Phys Res A 610:553–565CrossRefGoogle Scholar
  19. 19.
    Ryves TB (1969) A new thermal neutron flux convention. Metrologia 5:119–124CrossRefGoogle Scholar
  20. 20.
    Simonits A, Moens L, De Corte F, Wispelaere A, Elek A, Hoste J (1980) k 0-Measurements and related nuclear data compilation for (n,γ) reactor neutron activation analysis. J Radioanal Nucl Chem 60:461–516CrossRefGoogle Scholar
  21. 21.
    Wolfram MathWorld (2012) Least squares fitting. http://mathworld.wolfram.com/LeastSquaresFitting.html. Accessed 1 June 2011
  22. 22.
    Høgdahl (1964) Proceedings of the symposium on radiochemical methods of analysis, Salzburg, 19–23 October. IAEA, Vienna, p 23Google Scholar
  23. 23.
    De Corte F, Bellemans F, Neve P, Simonits A (1994) The use of a modified Westcott-formalism in the k 0-standardization of NAA: the state of affairs. J Radioanal Nucl Chem 179:93–103CrossRefGoogle Scholar
  24. 24.
    Holden NE (1999) Temperature dependence of the Westcott g-factor for neutron reactions in activation analysis. Pure Appl Chem 71:2309–2315CrossRefGoogle Scholar
  25. 25.
    Farina Arboccò F, Strijckmans K, Vermaercke P, Verheyen L, Sneyers L (2010) The impact of polyethylene vials on reactor channel characterization in k0-NAA. J Radioanal Nucl Chem 286:569–575CrossRefGoogle Scholar
  26. 26.
    Chilian C, St-Pierre J, Kennedy G (2006) Dependence of thermal and epithermal neutron self-shielding on sample size and irradiation site. Nucl Instrum Methods Phys Res A 564:629–635CrossRefGoogle Scholar
  27. 27.
    Chilian C, Chambon R, Kennedy G (2010) Neutron self-shielding with k 0-NAA irradiations. Nucl Instrum Methods Phys Res A 622:429–432CrossRefGoogle Scholar
  28. 28.
    IAEA (2009) MATSSF Program. Austria. http://www-nds.iaea.org/naa/matssf/. Accessed 1 May 2012
  29. 29.
    Farina Arboccò F, Vermaercke P, Sneyers L, Strijckmans K (2011) Experimental validation of some thermal neutron self-shielding calculation methods for cylindrical samples in INAA. J Radioanal Nucl Chem 291:529–534CrossRefGoogle Scholar
  30. 30.
    Farina Arboccò F, Vermaercke P, Verheyen L, Strijckmans K (2012) Experimental evaluation of epithermal neutron self-shielding for 96Zr and 98Mo. J Radioanal Nucl Chem 297:371–375CrossRefGoogle Scholar
  31. 31.
    NIST (2011) XCOM: photon cross sections database. http://www.nist.gov/pml/data/xcom/index.cfm. Accessed 1 Dec 2011
  32. 32.
    Van Sluijs R (2011) Kayzero for Windows. k 0-ware. The Netherlands. http://www.kayzero.com/. Accessed 1 June 2011
  33. 33.
    Moens L, De Donder J, Xi-lei L, De Corte F, De Wispelaere A, Simonits A, Hoste J (1981) Calculation of the absolute peak efficiency of gamma-ray detectors for different counting geometries. Nucl Instrum Methods 187:451–472CrossRefGoogle Scholar
  34. 34.
    Moens L, Hoste J (1983) Calculation of the peak efficiency of high-purity germanium detectors. Int J Appl Radiat Isot 34:1085–1095CrossRefGoogle Scholar
  35. 35.
    BIPM (2008) Evaluation of measurement data—guide to the expression of uncertainty in measurement. France. http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf. Accessed 1 Oct 2013
  36. 36.
    De Corte F, Hammami KS-E, Moens L, Simonits A, Wispelaere A, Hoste J (1981) The accuracy and precision of the experimental α-determination in the 1/E 1+α epithermal reactor-neutron spectrum. J Radioanal Nucl Chem 62:209–255CrossRefGoogle Scholar
  37. 37.
    Chadwick MB, Herman M, Obložinský P, Dunn ME, Danon Y, Kahler AC, Smith DL, Pritychenko B, Arbanas G, Arcilla R, Brewer R, Brown D, Capote R, Carlson AD, Cho YS, Derrien H, Guber K, Hale GM, Hoblit S et al (2011) ENDF/B-VII.1 Nuclear Data for Science and Technology: cross sections, covariances, fission product yields and decay data. Nucl Data Sheets 112:2887–2996CrossRefGoogle Scholar
  38. 38.
    BNL-National Nuclear Data Center (2013) NuDat 2.6: nuclear structure and decay data. USA. http://www.nndc.bnl.gov/nudat2/. Accessed 1 Dec 2013
  39. 39.
    JAEA-Nuclear Data Center (2014) Japanese evaluated nuclear data library. Japan. http://wwwndc.jaea.go.jp/jendl/jendl.html
  40. 40.
    Mughabghab SF (2006) Atlas of neutron resonances, 5th edn. Elsevier, AmsterdamGoogle Scholar
  41. 41.
    Pritychenko B, Mughabghab SF (2012) Neutron thermal cross sections, Westcott factors, resonance integrals, Maxwellian averaged cross sections and astrophysical reaction rates calculated from the ENDF/B-VII.1, JEFF-3.1.2, JENDL-4.0, ROSFOND-2010, CENDL-3.1 and EAF-2010 evaluated data libraries. Nucl Data Sheets 113:3120–3144CrossRefGoogle Scholar
  42. 42.
    St-Pierre J, Kennedy G (2006) Re-measurement of Q 0 and k 0 values for 14 nuclides. Nucl Instrum Methods Phys Res A 564:669–674CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • F. Farina Arboccò
    • 1
    • 2
  • P. Vermaercke
    • 2
  • K. Smits
    • 2
  • L. Sneyers
    • 2
  • K. Strijckmans
    • 1
  1. 1.Department of Analytical ChemistryGhent UniversityGhentBelgium
  2. 2.k0-INAA Laboratory, Studiecentrum voor Kernenergie - Centre d’étude de l’énergie nucléaire (SCK·CEN)Belgian Nuclear Research CentreMolBelgium

Personalised recommendations