Journal of Radioanalytical and Nuclear Chemistry

, Volume 302, Issue 2, pp 851–856 | Cite as

Effect of O5+ ion implantation on the electrical and structural properties of Cu nanowires

  • R. P. Chauhan
  • Pallavi Rana


Ion beam creates changes in the material along their track, not only embody the excellent properties but also tailor new materials. When the ions are implanted into the nanomaterials, they collide with the target atoms and interact through three different phenomena; electron collision, nuclear collision and charge exchange. In the present study, 1 MeV O5+ ions were implanted in copper nanowires of diameter 80 nm synthesized using template synthesis approach. Electrical and structural properties were recorded using Keithley 2400 series source meter and Rigaku X-ray diffractometer respectively, before and after the implantation. IV characteristics showed the ohmic behavior with enhancement in conductivity of copper nanowires after implantation. No structural damage in the nanowires was revealed by XRD spectra. The work done can be viewed as a positive aspect of implantation in metallic nanowires especially in 80 nm diameter Cu nanowires and may be utilized to fabricate nanodevices.


Ion implantation Nanowires Template synthesis IV characteristics XRD 



The authors wish to acknowledge the Director, IUAC, New Delhi, for providing Low Energy Ion Beam Facility. The help provided by LEIBF group during the experiment is also thankfully acknowledged. Authors also acknowledge NIT Kurukshetra for SEM and XRD facilities and SAI Lab, Thapar University, Patiala for providing EDS facility.


  1. 1.
    Dresselhaus MS, Lin YM, Rabin O, Black M R, Kong J, Dresselhaus G (2010). Nanowires. In: Springer Handbook of Nanotechnology (pp. 119–167). Springer, BerlinGoogle Scholar
  2. 2.
    Liu J, Luo M, Yuan Z, Ping A (2013) J Radioanal Nucl Chem 298(2):1427–1434CrossRefGoogle Scholar
  3. 3.
    Ramkumar J, Chandramouleeswaran S, Naidu BS, Sudarsan V (2013) J Radioanal Nucl Chem 298:1845–1855CrossRefGoogle Scholar
  4. 4.
    Smidt FA (1990) Int Mater Rev 35(2):61CrossRefGoogle Scholar
  5. 5.
    Li X-Y, Ren Y, Chen X-J, Qiao D-Y, Yuan W-Z (2011) J Radioanal Nucl Chem 287:173–176CrossRefGoogle Scholar
  6. 6.
    Mayer JW, Eriksson L, Davies JA (1970) Ion Implantation in Semiconductors. Academic Press, New YorkGoogle Scholar
  7. 7.
    Dhara S (2007) Crit Rev Solid State 32:1–50CrossRefGoogle Scholar
  8. 8.
    Was GS (1990) Ion beam modification of metals: compositional and microstructural changes. Prog Surf Sci 32:211–332CrossRefGoogle Scholar
  9. 9.
    Dedgaonkar VG, Chabria NB, Ogale SB (1992) J Radioanal Nucl Chem 166(4):351–357CrossRefGoogle Scholar
  10. 10.
    Nomura K, Reuther H (2011) J Radioanal Nucl Ch 287:341–346CrossRefGoogle Scholar
  11. 11.
    Baia C, Liub M (2012) Nano Today 7:258–281CrossRefGoogle Scholar
  12. 12.
    Husain A, Hone J, Postma HWC, Huang XMH, Drake T, Barbic M, Scherer A, Roukes ML (2003) Appl Phys Lett 83:1240–1242CrossRefGoogle Scholar
  13. 13.
    Kim K, Yoon SJ, Kim D (2006) Opt Express 14:12419–12431CrossRefGoogle Scholar
  14. 14.
    Walter EC, Penner RM, Liu H, Ng KH, Zach MP, Favier F (2002) Surf Interface Anal 34:409–412CrossRefGoogle Scholar
  15. 15.
    Landauer R (1957) IBM J Res Dev 1(3):223CrossRefGoogle Scholar
  16. 16.
    Choi DS, Rheem Y, Yoo B, Myung NV, Kim YK (2010) Curr Appl Phys 10(4):1037–1040CrossRefGoogle Scholar
  17. 17.
    Lee JW, Kang MG, Kim B-S, Hong BH, Whang D, Hwang SW (2010) Scripta Mater 63:1009–1012CrossRefGoogle Scholar
  18. 18.
    Steinhogl W, Schindler G, Steinlesberger G, Engelhardt M (2002) Phys Rev B 66:075414CrossRefGoogle Scholar
  19. 19.
    Gehlawat D, Chauhan RP, Sonkawade RG, Chakarvarti SK (2012) Appl Phys A 106:157–164CrossRefGoogle Scholar
  20. 20.
    Gehlawat D, Chauhan RP, Sonkawade RG (2012) Sci Adv Mater 4:1134–1141CrossRefGoogle Scholar
  21. 21.
    Colli A, Fasoli A, Ronning C, Pisana S, Piscanec S, Ferrari AC (2008) Nano Lett 8:2188CrossRefGoogle Scholar
  22. 22.
    Kamins T, Stanley WR, Hesjedal T, Harris J (2002) Physica E 13:995–998CrossRefGoogle Scholar
  23. 23.
    Ronning C, Borschel C, Geburt S, Niepelt R (2010) Mater Sci Eng R 70:30–43CrossRefGoogle Scholar
  24. 24.
    Borschel C, Ronning C (2011) Nucl Instrum Methods B 269:2133–2138CrossRefGoogle Scholar
  25. 25.
    Kanungo PD, Kogler R, Nguyen-Duc K, Zakharov N, Werner P, Gosele U (2009) Nanotechnology 20:165706CrossRefGoogle Scholar
  26. 26.
    Huczko A (2000) Appl Phys A 70:365CrossRefGoogle Scholar
  27. 27.
    Cao G, Liu D (2008) Adv Colloid Interface 136:45CrossRefGoogle Scholar
  28. 28.
    Chakarvarti SK (2006) Proc. SPIE 6172, Smart Structures and Materials 2006: Smart Electronics, MEMS, BioMEMS, and Nanotechnology, 61720G; doi: 10.1117/12.640311
  29. 29.
    Mirzaii M, Kakavand T, Talebi M, Rajabifar S (2012) J Radioanal Nucl Chem 292:261–267CrossRefGoogle Scholar
  30. 30.
    Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison–Wesley, BostonGoogle Scholar
  31. 31.
    Wharam DA, Thornton TJ, Newbury R, Pepper M, Ahmed H, Frost JEF, Hasko DG, Peacock DC, Ritchie DA, Jones GAC (1988) J Phys C Solid State 21:L209CrossRefGoogle Scholar
  32. 32.
    Muller CJ, Van Ruitenbeek JM, DeJongh LJ (1992) Phys Rev Lett 69:140–143CrossRefGoogle Scholar
  33. 33.
    Costa-Krämer JL, Garcia N, Olin H (1997) Phys Rev B 55:12910–12913CrossRefGoogle Scholar
  34. 34.
    Li CZ, He HX, Bogozi A, Bunch JS, Tao NJ (2000) Appl Phys Lett 76:1333–1335CrossRefGoogle Scholar
  35. 35.
    Costa-Krämer JL, Garcia N, Garcia-Mochales P, Serena PA, Marques MI, Correia A (1997) Phys Rev B 55:5416–5424CrossRefGoogle Scholar
  36. 36.
    Ziegler J F, Biersack J, Littmark U (2008) SRIM 2008.04:
  37. 37.
    Ziegler JF, Biersack J, Littmark U (1985) The stopping and range of ions in solids. Pergamon Press, New YorkGoogle Scholar
  38. 38.
    Li WQ, Xiao XH, Stepanov AL, Dai ZG, Wu W, Cai GX, Ren F, Jiang CZ (2013) Nanoscale Res Lett 8:175CrossRefGoogle Scholar
  39. 39.
    Das Kanungo P, Zakharov N, Bauer J, Breitenstein O, Werner P, Goesele U (2008) Appl Phys Lett 92:263107–263107CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of TechnologyKurukshetraIndia

Personalised recommendations