Journal of Radioanalytical and Nuclear Chemistry

, Volume 302, Issue 1, pp 217–224 | Cite as

Mechanism of sorption of pertechnetate onto ordered mesoporous carbon

  • Đ. Petrović
  • A. Đukić
  • K. Kumrić
  • B. Babić
  • M. Momčilović
  • N. Ivanović
  • Lj. Matović


Ordered mesoporous carbon (OMC) was used as an adsorbent for the removal of pertechnetate (TcO4 ) anion. The maximum uptake (93 %) of TcO4 was obtained after 60 min of contact. The adsorption of TcO4 is almost pH-independent in very wide pH region (from 4.0 to 10.0). Maximum K d of 6.6 × 103 cmg−1 was found at pH 2.0. TcO4 interacts with carboxylic functional groups present at the surface of the OMC by displacing the OH ions with TcO4 via ion exchange mechanism.


Technetium-99 Adsorption Ordered mesoporous carbon Surface functional groups 



We acknowledge the support to this work provided by the Ministry of Education and Science of Serbia through the project No. III 45012.


  1. 1.
    Shi K, Hou X, Roos P, Wu W (2012) Determination of technetium-99 in environmental samples: a review. Anal Chim Acta 709:1–20CrossRefGoogle Scholar
  2. 2.
    Vinsova H, Konirova R, Koudelkova M, Jedinakova-Krizova V (2004) Sorption of technetium and rhenium on natural sorbents under aerobic conditions. J Radioanal Nucl Chem 261(2):407–413CrossRefGoogle Scholar
  3. 3.
    Jaisi DP, Dong H, Plymale AE, Fredrickson JK, Zachara JM, Heald S, Liu C (2009) Reduction and long-term immobilization of technetium by Fe(II) associated with clay mineral nontronite. Chem Geol 264:127–138CrossRefGoogle Scholar
  4. 4.
    Jedináková-Křížová V, Zeman J, Vinšová H, Hanslík E (2010) Bentonite stability, speciation and migration behaviour of some critical radionuclides. J Radioanal Nucl Chem 286:719–727CrossRefGoogle Scholar
  5. 5.
    Zhang F, Parker JC, Brooks SC, Watson DB, Jardine PM, Gu B (2010) Prediction of uranium and technetium sorption during titration of contaminated acidic groundwater. J Hazard Mater 178:42–48CrossRefGoogle Scholar
  6. 6.
    Kumar S, Rawat N, Kar AS, Tomar BS, Manchanda VK (2011) Effect of humic acid on sorption of technetium by alumina. J Hazard Mater 192:1040–1045CrossRefGoogle Scholar
  7. 7.
    Watson JHP, Ellwood DC (2003) The removal of the pertechnetate ion and actinides from radioactive waste streams at Hanford, Washington, USA and Sellafield, Cumbria, UK: the role of iron-sulfide-containing adsorbent materials. Nucl Eng Des 226:375–385CrossRefGoogle Scholar
  8. 8.
    Chen J, Veltkamp A (2002) Pertechnetate removal by macroporous polymer impregnated with 2-nitrophenyl octyl ether (NPOE). Solvent Extr Ion Exch 20:515–524CrossRefGoogle Scholar
  9. 9.
    Ito K, Akiba K (1991) Adsorption of pertechnetate ion on active carbon from acids and their salt solutions. J Radioanal Nucl Chem 152(2):381–390CrossRefGoogle Scholar
  10. 10.
    Gu B, Dowlen EK, Liang L, Clausen LJ (1996) Efficient separation and recovery of technetium-99 from contaminated groundwater. Sep Technol 6:123–132CrossRefGoogle Scholar
  11. 11.
    Holm E, Gäfvert T, Lindahl P, Roos P (2000) In situ sorption of technetium using activated carbon. Appl Radiat Isot 53:153–157CrossRefGoogle Scholar
  12. 12.
    Wang Y, Gao H, Yeredla R, Xu H, Abrecht M (2007) Control of pertechnetate sorption on activated carbon by surface functional groups. J Colloid Interface Sci 305:209–217CrossRefGoogle Scholar
  13. 13.
    Popova NN, Bykov LG, Petukhova AG, Tananaev GI, Ershov GB (2013) Sorption of Tc(VII) and Am(III) by carbon materials: effect of oxidation. J Radioanal Nucl Chem 298:1463–1468CrossRefGoogle Scholar
  14. 14.
    Liang L, Gu B, Yin X (1996) Removal of technetium-99 from contaminated groundwater with sorbents and reductive materials. Sep Technol 6:111–122CrossRefGoogle Scholar
  15. 15.
    Suzuki T, Fujii Y, Yan W, Mimura H, Koyama S, Ozawa M (2009) Adsorption behavior of VII group elements on tertiary pyridine resin in hydrochloric acid solution. J Radioanal Nucl Chem 282:641–644CrossRefGoogle Scholar
  16. 16.
    Chen Q, Dahlgaard H, Hansen HJM, Aarkrog A (1990) Determination of 99Tc in environmental samples by anion exchange and liquid–liquid extraction at controlled valency. Anal Chim Acta 228:163–167CrossRefGoogle Scholar
  17. 17.
    Hughes DL, DeVol AT (2006) Characterization of a Teflon® coated semiconductor detector flow cell for monitoring of pertechnetate in groundwater. J Radioanal Nucl Chem 267:287–295CrossRefGoogle Scholar
  18. 18.
    Xu C, Wang X, Shi X, Lin S, Zhu L, Chen Y (2014) Bromate removal from aqueous solutions by ordered mesoporous carbon. Environ Technol 35(8):984–992CrossRefGoogle Scholar
  19. 19.
    Liu Y, Li Q, Cao X, Wang Y, Jiang X, Li M, Hua M, Zhang Z (2013) Removal of uranium(VI) from aqueous solutions by CMK-3 and its polymer composite. Appl Surf Sci 285P:258–266CrossRefGoogle Scholar
  20. 20.
    Zhuang X, Wan Y, Feng C, Shen Y, Zhao D (2009) Highly efficient adsorption of bulky dye molecules in wastewater on ordered mesoporous carbons. Chem Mater 21:706–716CrossRefGoogle Scholar
  21. 21.
    Momčilović M, Stojmenović M, Gavrilov N, Pašti I, Mentus S, Babić B (2014) Complex electrochemical investigation of ordered mesoporous carbon synthesized by soft-templating method: charge storage and electrocatalytical or Pt-electrocatalyst supporting behavior. Electrochim Acta 125:606–614CrossRefGoogle Scholar
  22. 22.
    Goertzen LS, Thériault DK, Oickle MA, Tarasuk CA, Andreas AH (2010) Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon 48:1252–1261CrossRefGoogle Scholar
  23. 23.
    Wu F, Huang R, Mu D, Shen X, Wu B (2014) A novel composite with highly dispersed Fe3O4 nanocrystals on ordered mesoporous carbon as an anode for lithium ion batteries. J Alloys Compd 585:783–789CrossRefGoogle Scholar
  24. 24.
    Zhu Z, Hu Y, Jiang H, Li C (2014) A three-dimensional ordered mesoporous carbon/carbon nanotubes nanocomposites for supercapacitors. J Power Sources 246:402–408CrossRefGoogle Scholar
  25. 25.
    Kandah MI, Shawabkeh R, Al-Zboon MA (2006) Synthesis and characterization of activated carbon from asphalt. Appl Surf Sci 253:821–826CrossRefGoogle Scholar
  26. 26.
    Xiao B, Thomas MK (2005) Adsorption of aqueous metal ions on oxygen and nitrogen functionalized nanoporous activated carbons. Langmuir 21(9):3892–3902CrossRefGoogle Scholar
  27. 27.
    Boonamnuayvitaya V, Sae-ung S, Tanthapanichakoon W (2005) Preparation of activated carbons from coffee residue for the adsorption of formaldehyde. Sep Purif Technol 42:159–168CrossRefGoogle Scholar
  28. 28.
    Puziy M, Poddubnaya IO, Martinez-Alonso A, Suarez-Garcia F, Tascon MDJ (2002) Synthetic carbons activated with phosphoric acid: i. Surface chemistry and ion binding properties. Carbon 40:1493–1505CrossRefGoogle Scholar
  29. 29.
    Al-Qodah Z, Shawabkah R (2009) Production and characterization of granular activated carbon from activated sludge. Braz J Chem Eng 26(1):127–136CrossRefGoogle Scholar
  30. 30.
    Wang Y, Gao H, Yeredla R, Xu H, Abrecht M (2007) Control of pertechnetate sorption on activated carbon by surface functional groups. J Colloid Interface Sci 305(2):209–217CrossRefGoogle Scholar
  31. 31.
    Babić BM, Milonjić SK, Polovina MJ, Čupić S, Kaludjerović BV (2002) Adsorption of zinc, cadmium and mercury ions from aqueous solutions on an activated carbon cloth. Carbon 40:1109–1115CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Đ. Petrović
    • 1
  • A. Đukić
    • 1
  • K. Kumrić
    • 1
  • B. Babić
    • 1
  • M. Momčilović
    • 1
  • N. Ivanović
    • 1
  • Lj. Matović
    • 1
  1. 1.Vinča Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia

Personalised recommendations