Journal of Radioanalytical and Nuclear Chemistry

, Volume 301, Issue 3, pp 863–869 | Cite as

A resonance light scattering method for the determination of uranium based on a water-soluble salophen and oxalate

  • Lin Chen
  • Lifu Liao
  • Xing Shen
  • Yunfei He
  • Canhui Xu
  • Xilin Xiao
  • Yingwu Lin
  • Changming Nie


A resonance light scattering (RLS) method for the direct detection of uranium (VI) or uranyl in aqueous solution without separation procedure has been reported in this paper. Sulfo-salophen, a water-soluble tetradentate Schiff base ligand of uranyl, reacted with uranyl to form a complex. The complex reacted further with oxalate to form supramolecular dimer with large molecular volume, resulting in a production of strong RLS signal. The amount of uranium (VI) was detected through measuring the RLS intensity. A linear range was found to be 0.2–30.0 ng/mL under optimal conditions with a detection limit of 0.15 ng/mL. The method has been applied to determine uranium (VI) in environmental water samples with the relative standard deviations of less than 5 % and the recoveries of 98.8–105.8 %. The present technique is suitable for the assay of uranium (VI) in environmental water samples collected from different sources.


Uranium Resonance light scattering Water-soluble salophen Oxalate 



The authors thank the National Natural Science Foundation of China (NSFC Nos. 11275091, 10975069 and 11275090) for financial support.


  1. 1.
    D’Ilio S, Violante N, Senofonte O, Majorani C, Petrucci F (2010) Determination of depleted uranium in human hair by quadrupole inductively coupled plasma mass spectrometry: method development and validation. Anal Meth 2:1184–1190CrossRefGoogle Scholar
  2. 2.
    Thangavel S, Dhavile SM, Dash K, Chaurasia SC (2010) Trace level determination of uranium and thorium in ilmenite ore by inductively coupled plasma atomic emission spectrometry (ICP-AES). Atom Spectrosc 31:92–96Google Scholar
  3. 3.
    Landsberger S, Kapsimalis R (2013) Comparison of neutron activation analysis techniques for the determination of uranium concentrations in geological and environmental materials. J Environ Radioact 117:41–44CrossRefGoogle Scholar
  4. 4.
    Azam A, Prasad R (1989) Trace element analysis of uranium of soil and plant samples using fission track registration technique. J Radioanal Nucl Chem 133:199–202CrossRefGoogle Scholar
  5. 5.
    Jassim TN, Liljenzin JQ, Persson G (1985) An improved method for on-line uranium determination in aqueous and organic solution using low energy γ-ray absorption technique. Int J Appl Radiat Isotop 36:405–407CrossRefGoogle Scholar
  6. 6.
    Ruan C, Luo W, Wang W, Gu B (2007) Surface-enhanced Raman spectroscopy for uranium detection and analysis in environmental samples. Anal Chim Acta 605:80–86CrossRefGoogle Scholar
  7. 7.
    El-Sayed AA, Hamed MM, Hmmad HA, El-Reefy S (2007) Collection/concentration of trace uranium for spectrophotometric detection using activated carbon and first-derivative spectrophotometry. Radiochim Acta 95:43–48CrossRefGoogle Scholar
  8. 8.
    Lu W, Fernández Band BS, Yu Y, Li QG, Shang JC, Wang YC, Fang Y, Zhou LP, Sun LL, Tang Y, Jing SH, Huang W, Zhang JP, Tian RR (2007) Resonance light scattering and derived techniques in analytical chemistry: past, present, and future. Microchim Acta 158:29–58CrossRefGoogle Scholar
  9. 9.
    Yue Q, Shen T, Wang J, Wang L, Xu S, Li H, Liu J (2013) A reusable biosensor for detecting mercury(ii) at the subpicomolar level based on “turn-on” resonance light scattering. Chem Commun 49:1750–1752CrossRefGoogle Scholar
  10. 10.
    Yun Y, Cui F, Geng S, Jin J (2012) Determination of bismuth in pharmaceutical products using phosphoric acid as molecular probe by resonance light scattering. Luminescence 27:352–356CrossRefGoogle Scholar
  11. 11.
    Chen ZG, Peng YR, Xie F, Jiang WY, Zou H, Qiu HD, Chen JH (2010) Determination of anionic surfactant in surface water by resonance light-scattering technology. Int J Environ Anal Chem 90:573–585CrossRefGoogle Scholar
  12. 12.
    Chen Z, Zhang G, Chen X, Peng Y, Lin Y, Lu S (2011) A resonance light scattering amplification system for determination of trace amounts of benzidine in surface water. Anal Meth 3:1845–1850CrossRefGoogle Scholar
  13. 13.
    Xiang H, Luo Q, Dai K, Duan W, Fan Y, Xie Y (2012) Use of cetyltrimethylammonium bromide as a simple probe for rapid determination of emodin by resonance light scattering technique. Spectrochim Acta A 96:874–881CrossRefGoogle Scholar
  14. 14.
    Xue J, Qian Q, Wang Y, Meng X, Liu L (2013) Resonance light scattering determination of metallothioneins using levofloxacin-palladium complex as a light scattering probe. Spectrochim Acta A 102:205–211CrossRefGoogle Scholar
  15. 15.
    Chen Z, Lei Y, Liang Z, Li F, Liu L, Li C, Chen F (2012) A highly sensitive label-free resonance light scattering assay of carcinoembryonic antigen based on immune complexes. Anal Chim Acta 747:99–105CrossRefGoogle Scholar
  16. 16.
    Chen Z, Lei Y, Chen X, Wang Z, Liu J (2012) An aptamer based resonance light scattering assay of prostate specific antigen. Biosens Bioelectron 36:35–40CrossRefGoogle Scholar
  17. 17.
    Vahedian-Movahed H, Saberi MR, Chamani J (2011) Comparison of binding interactions of lomefloxacin to serum albumin and serum transferrin by resonance light scattering and fluorescence quenching methods. J Biomol Struct Dyn 28:483–502CrossRefGoogle Scholar
  18. 18.
    Chen Z, Wang Z, Chen J, Chen X, Wu J, Wu Y, Liang J (2013) Resonance light scattering technique as a new tool to determine the binding mode of anticancer drug oridonin to DNA. Eur J Med Chem 66:380–387CrossRefGoogle Scholar
  19. 19.
    Chen Z, Zhang G, Chen X, Gao W (2012) A resonance light-scattering off-on system for studies of the selective interaction between adriamycin and DNA. Anal Bioanal Chem 402:2163–2171CrossRefGoogle Scholar
  20. 20.
    Zhou B, Shi L, Wang Y, Yang H, Xue J, Liu L, Wang Y, Wang J (2013) Resonance light scattering determination of uranyl based on labeled DNAzyme-gold nanoparticle system. Spectrochim Acta A 110:419–424CrossRefGoogle Scholar
  21. 21.
    Sessler JL, Melfi PF, Pantos GD (2006) Uranium complexes of multidentate N-donor ligands. Coord Chem Rev 250:816–843CrossRefGoogle Scholar
  22. 22.
    Cametti M, Nissinen M, Dalla Cort A, Mandolini L, Rissanen K (2005) Recognition of alkali metal halide contact ion pairs by uranyl-salophen receptors bearing aromatic sidearms. The role of cation-π interactions. J Am Chem Soc 127:3831–3837CrossRefGoogle Scholar
  23. 23.
    Dalla Cort A, Forte G, Schiaffino L (2011) Anion recognition in water with use of a neutral uranyl-salophen receptor. J Org Chem 76:7569–7572CrossRefGoogle Scholar
  24. 24.
    Ciogli A, Dalla Cort A, Gasparrini F, Lunazzi L, Mandolini L, Mazzanti A, Pasquini C, Pierini M, Schiaffino L, Mihan FY (2008) Enantiomerization of chiral uranyl-salophen complexes via unprecedented ligand hemilability: toward configurationally stable derivatives. J Org Chem 73:6108–6118CrossRefGoogle Scholar
  25. 25.
    Dalla Cort A, Pasquini C, Schiaffino L (2007) Nonsymmetrically substituted uranyl-salophen receptors: new opportunities for molecular recognition and catalysis. Supramol Chem 19:79–87CrossRefGoogle Scholar
  26. 26.
    Dalla Cort A, Mandolini L, Schiaffino L (2008) The role of attractive van der Waals forces in the catalysis of Michael addition by a phenyl decorated uranyl-salophen complex. J Org Chem 73:9439–9442CrossRefGoogle Scholar
  27. 27.
    Hosseini M, Ganjali MR, Veismohammadi B, Faridbod F, Abkenar SD, Salavati-Niasari M (2012) Selective recognition of acetate ion based on fluorescence enhancement chemosensor. Luminescence 27:341–345CrossRefGoogle Scholar
  28. 28.
    Cametti M, Ilander L, Rissanen K (2009) Recognition of Li+ by a salophen-UO2 homodimeric complex. Inorg Chem 48:8632–8637CrossRefGoogle Scholar
  29. 29.
    Cametti M, Nissinen M, Dalla Cort A, Mandolini L, Rissanen K (2007) Ion pair recognition of quaternary ammonium and iminium salts by uranyl-salophen compounds in solution and in the solid state. J Am Chem Soc 129:3641–3648CrossRefGoogle Scholar
  30. 30.
    Antonisse MMG, Snellink-Ruël BHM, Engbersen JFJ, Remhoudt DN (1998) Stoichiometry of uranyl salophene anion complexes. J Org Chem 63:9776–9781CrossRefGoogle Scholar
  31. 31.
    Rudkevich DM, Verboom W, Brzózka Z, Palys MJ, Stauthamer WPRV, Van Hummel GJ, Franken SM, Harkema S, Engbersen JFJ, Reinhoudt DN (1994) Functionalized UO2 salenes: neutral receptors for anions. J Am Chem Soc 116:4341–4351CrossRefGoogle Scholar
  32. 32.
    Takao K, Ikeda Y (2007) Structural characterization and reactivity of UO2(salophen)L and [UO2(salophen)]2: dimerization of UO2(salophen) fragments in noncoordinating solvents (salophen = N,N′-disalicylidene-o-phenylenediaminate, L = N,N-dimethylformamide, dimethyl sulfoxide). Inorg Chem 46:1550–1562CrossRefGoogle Scholar
  33. 33.
    Kim DW, Park DW, Yang M, Kim TH, Mahajan RK, Kim JS (2007) Selective uranyl ion detection by polymeric ion-selective electrodes based on salphenH2 derivatives. Talanta 74:223–228CrossRefGoogle Scholar
  34. 34.
    Wu M, Liao L, Zhao M, Lin Y, Xiao X, Nie C (2012) Separation and determination of trace uranium using a double-receptor sandwich supramolecule method based on immobilized salophen and fluorescence labeled oligonucleotide. Anal Chim Acta 729:80–84CrossRefGoogle Scholar
  35. 35.
    Yang M, Liao L, Zhang G, He B, Xiao X, Lin Y, Nie C (2013) Detection of uranium with a wireless sensing method by using salophen as receptor and magnetic nanoparticles as signal-amplifying tags. J Radioanal Nucl Chem 298:1393–1399CrossRefGoogle Scholar
  36. 36.
    Zhou L, Cai P, Feng Y, Cheng J, Xiang H, Liu J, Wu D, Zhou X (2012) Synthesis and photophysical properties of water-soluble sulfonato-Salen-type Schiff bases and their applications of fluorescence sensors for Cu 2+ in water and living cells. Anal Chim Acta 735:96–106CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Lin Chen
    • 1
  • Lifu Liao
    • 1
  • Xing Shen
    • 1
  • Yunfei He
    • 1
  • Canhui Xu
    • 1
  • Xilin Xiao
    • 1
  • Yingwu Lin
    • 1
  • Changming Nie
    • 1
  1. 1.College of Chemistry and Chemical EngineeringUniversity of South ChinaHengyangChina

Personalised recommendations