Journal of Radioanalytical and Nuclear Chemistry

, Volume 302, Issue 1, pp 281–288 | Cite as

Electrochemical behavior of uranyl in ionic liquid 1-butyl-3-methylimidazolium chloride mixture with water

  • Xu-Feng Tan
  • Li-Yong Yuan
  • Chang-Ming Nie
  • Kui Lui
  • Zhi-Fang Chai
  • Wei-Qun Shi


Electrochemical behaviors of U(VI) in 1-butyl-3-methylimidazolium chloride (C4MimCl) with various water contents investigated by chronopotentiometry and cyclic voltammetry. The electrochemical reduction of U(VI) was identified to follow two processes: a lower valence intermediate U(V) was initially formed at the potential of ca. −0.2 V(vs. Ag wire). Then, further deposition of UO2 was followed at around −0.8 V. Little amount of water (1–4 wt%) in C4MimCl, however, has an effect on the U(VI) reduction by changing the current density of the redox reaction and the diffusion coefficient of U(VI) in C4MimCl. The deposited product by potentiostatic electrolysis on the surface of stainless steel electrode was characterized by the scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray diffraction (XRD) methods. Although the electrodeposited black film was amorphous, the electrochemical reduced product of U(VI) can be still confirmed to be UO2 by XRD after the crystallization of the amorphous deposits at 1,073 K in nitrogen atmosphere.


Ionic liquid Cyclic voltammetry Electrochemical behavior Uranyl 



This work was supported by the Major Research Plan “Breeding and Trans-mutation of Nuclear Fuel in Advanced Nuclear Fission Energy System” of the Natural Science Foundation of China (Grants 91226201,11105162,11275219,11275090 and 91126006) and the “Strategic Priority Research program” of the Chinese Academy of Sciences (Grants XDA030104).


  1. 1.
    Johnson KE (2007) Interface Electrochim Soc 16(1):38–41Google Scholar
  2. 2.
    Seddon KR, Plechkova NV (2012) Ionic liquids uncoiled: critical expert overviews. Wiley, New YorkGoogle Scholar
  3. 3.
    Kirchner B, Clare B (2009) Ionic liquids, vol 290. Springer, Leipzig GermanyGoogle Scholar
  4. 4.
    Sun X, Luo H, Dai S (2011) Chem Rev 112(4):2100–2128CrossRefGoogle Scholar
  5. 5.
    Binnemans K (2007) Chem Rev 107(6):2592–2614CrossRefGoogle Scholar
  6. 6.
    Takao K, Bell TJ, Ikeda Y (2012) Inorg Chem 52(7):3459–3472CrossRefGoogle Scholar
  7. 7.
    Stockmann TJ, Zhang J, Montgomery A-M, Ding Z (2014) Anal Chim Acta 821:41–47CrossRefGoogle Scholar
  8. 8.
    Venkatesan K, Srinivasan T, Rao PV (2009) J Nucl Radiochem Sci 10:R1–R6CrossRefGoogle Scholar
  9. 9.
    Vasudeva Rao PR, Venkatesan K, Nagarajan K (2011) Sep Sci Tech 47:204–222CrossRefGoogle Scholar
  10. 10.
    Anderson CJ, Deakin MR, Choppin GR, D’Olieslager W, Heerman L, Pruett DJ (1991) Inorg Chem 30(21):4013–4016CrossRefGoogle Scholar
  11. 11.
    Anderson CJ, Choppin G, Pruett D, Costa D, Smith W (1999) Radiochim Acta 84(1):31–36Google Scholar
  12. 12.
    Nikitenko S, Cannes C, Le Naour C, Moisy P, Trubert D (2005) Inorg Chem 44(25):9497–9505CrossRefGoogle Scholar
  13. 13.
    Sornein M-O, Cannes C, Naour CL, Mendes M, Hennig C (2011) J Electroanal Chem 661(1):49–56CrossRefGoogle Scholar
  14. 14.
    Giridhar P, Venkatesan K, Subramaniam S, Srinivasan T, Vasudeva Rao P (2006) Radiochim Acta 94(8):415–420Google Scholar
  15. 15.
    Asanuma N, Harada M, Yasuike Y, Nogami M, Suzuki K, Ikeda Y (2007) J Nucl Sci Technol 44(3):368–372CrossRefGoogle Scholar
  16. 16.
    Rao CJ, Venkatesan K, Nagarajan K, Srinivasan T (2008) Radiochim Acta 96(7):403–409Google Scholar
  17. 17.
    O’Mahony AM, Silvester DS, Aldous L, Hardacre C, Compton RG (2008) J Cheml Eng Data 53(12):2884–2891CrossRefGoogle Scholar
  18. 18.
    Xu M, Ivey D, Xie Z, Qu W, Dy E (2013) Electrochim Acta 97:289–295CrossRefGoogle Scholar
  19. 19.
    Stockmann TJ, Ding Z (2014) Can J Chem. doi: 10.1139/cjc-2014-0006 Google Scholar
  20. 20.
    Simons T, Torriero A, Howlett P, MacFarlane D, Forsyth M (2012) Electrochem Commun 18:119–122CrossRefGoogle Scholar
  21. 21.
    Liu Z, Abedin S, Endres F (2012) Electrochim Acta 89:635–643CrossRefGoogle Scholar
  22. 22.
    Mele A, Tran CD, De Paoli Lacerda SH (2003) Angew Chem 115:4500–4502CrossRefGoogle Scholar
  23. 23.
    Freiderich JW, Wanigasekara E, Sun X-G, Meisner RA, Meyer HM III, Luo H, Delmau LH, Dai S, Moyer BA (2013) Electrochim Acta 115:630–638CrossRefGoogle Scholar
  24. 24.
    Mastragostino M, Saveant J (1968) Electrochim Acta 13(4):751–762CrossRefGoogle Scholar
  25. 25.
    Mozo J, Carbajo J, Sturm J, Núnez-Vergara L, Moscoso R, Squella J (2011) Anal Chim Acta 699(1):33–43CrossRefGoogle Scholar
  26. 26.
    Ogura T, Sasaki K, Takao K, Arai T, Ikeda Y (2012) Sci China Chem 55(9):1699–1704CrossRefGoogle Scholar
  27. 27.
    Ikeda Y, Hiroe K, Asanuma N, Shirai A (2009) J Nucl Sci Technol 46(2):158–162CrossRefGoogle Scholar
  28. 28.
    Ogura T, Takao K, Sasaki K, Arai T, Ikeda Y (2011) Inorg Chem 50(21):10525–10527CrossRefGoogle Scholar
  29. 29.
    Shirai O, Iwai T, Suzuki Y, Sakamura Y, Tanaka H (1998) J Alloys Compd 271:685–688CrossRefGoogle Scholar
  30. 30.
    Rao J, Venkatesan K, Nagarajan K, Srinivasan T, Vasudeva Rao P (2009) Electrochim Acta 54(20):4718–4725CrossRefGoogle Scholar
  31. 31.
    Bard AJ, Faulkner LR (1980) Electrochemical methods: fundamentals and applications, vol 2. Wiley, New YorkGoogle Scholar
  32. 32.
    Giridhar P, Venkatesan K, Srinivasan T, Rao P (2007) Electrochim Acta 52(9):3006–3012CrossRefGoogle Scholar
  33. 33.
    Brown E, Sandifer J (1986) Physical methods in chemistry: electrochemical methods. Wiley, New YorkGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringUniversity of South ChinaHengyangChina
  2. 2.Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  3. 3.School of Radiological & Interdisciplinary SciencesSoochow UniversitySuzhouChina

Personalised recommendations