Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 301, Issue 2, pp 545–553 | Cite as

Recrystallization of 223Ra with barium sulfate

  • Natallia Torapava
  • Henrik Ramebäck
  • Enzo Curti
  • Petra Lagerkvist
  • Christian Ekberg
Article

Abstract

In this work, the kinetics of barium sulfate recrystallization has been studied in acidic 0.01 mol dm−3 sodium sulfate solution using 223Ra and 133Ba tracers at very low total radium concentration, i.e. less than 10−13 mol dm−3. It was found that the system follows the homogeneous recrystallization model and that recrystallization rates, inferred by the decrease of 223Ra and 133Ba in the aqueous solution, are fast. Therefore, even at very low concentrations, below the solubility limit, radium will be retained by barium sulfate—a mineral present in the deep underground repository.

Keywords

Radium Barite Recrystallization Kinetics Nuclear waste 

Notes

Acknowledgments

The research leading to these results received funding from the European Union’s European Atomic Energy Community’s (Euratom) Seventh Framework Programme FP7/2011−2013 under grant agreement n° 269688 (“SKIN” project). We are grateful to Prof. Gunnar Skarnemark for help with safety advice regarding work with radium.

Supplementary material

10967_2014_3170_MOESM1_ESM.docx (260 kb)
Supplementary material 1 (DOCX 260 kb)

References

  1. 1.
    Greenwood NN, Earnshaw A (1997) Chemistry of the elements. Elsevier Butterworth Heinemann, OxfordGoogle Scholar
  2. 2.
    Lind SC, Underwood JE, Whiteemore CF (1918) The solubility of pure radium sulfate. J Am Chem Soc XL:465–472Google Scholar
  3. 3.
    Nikitin B, Tolmatscheff P (1933) Ein Beitrag zur Gültigkeit der Massenwirkungsgesetzes II. Quantitative Bestimmung der Löslichkeit des Radiumsulfates in Natriumsulfatlosungen und in Wasser. Z Phys Chem A: 167Google Scholar
  4. 4.
    Paige CR, Kornicker WA, Hileman OEJ, Snodgrass WJ (1998) Solution equilibria for uranium ore processing: the BaSO4–H2SO4–H2O system and the RaSO4–H2SO4–H2O system. Geochim Cosmochim Acta 62:15–23CrossRefGoogle Scholar
  5. 5.
    Langmuir D, Melchior D (1985) The geochemistry of Ca, Sr, Ba and Ra sulfates in some deep brines from the Palo Duro Basin, Texas. Geochim Cosmochim Acta 49:2423–2432CrossRefGoogle Scholar
  6. 6.
    Doerner HA, Hoskins WM (1925) Co-precipitation of radium and barium sulfates. J Am Chem Soc 47:662–675CrossRefGoogle Scholar
  7. 7.
    Grandia F, Merino J, Bruno J (2008) Assessment of the radium-barium co-precipitation and its potential influence on the solubility of Ra in the near-field. Swedish Nuclear Fuel and Waste Management Co, Stockholm, p 52Google Scholar
  8. 8.
    Langmuir D, Riese AC (1985) The thermodynamic properties of radium. Geochim Cosmochim Acta 49:1593–1601CrossRefGoogle Scholar
  9. 9.
    Hedin A (2006) Long-term safety for KBS-3 repositories at Forsmark and Laxemar—a first evaluation. SKB TR-06-09, Svensk Kärnbränslehantering ABGoogle Scholar
  10. 10.
    SKI Report 97:5 SKI SITE-94 (1997) Deep repository performance assessment project. SKI—Swedish Nuclear Power Inspectorate, StockholmGoogle Scholar
  11. 11.
    Bosbach D, Böttle M, Metz V (2010) Experimental study on Ra2+ uptake by barite (BaSO4). Kinetics of solid solution formation via BaSO4 dissolution and RaxBa1-xSO4 (re)precipitation. Swedish Nuclear Fuel and Waste Management Co, Stockholm, p 106Google Scholar
  12. 12.
    Sebesta F, Benes P, Sedlacek J, John J, Sandrik R (1981) Behavior of radium and barium in a system including uranium-mine waste-waters and adjacent surface waters. Environ Sci Technol 15:71–75CrossRefGoogle Scholar
  13. 13.
    Martin AJ, Crusius J, McNee JJ, Yanful EK (2003) The mobility of radium-226 and trace metals in pre-oxidized subaqueous uranium mill tailings. Appl Geochem 18:1095–1110CrossRefGoogle Scholar
  14. 14.
    Nilsson S, Franzén L, Parker C, Tyrell C, Blom R, Tennvall J, Lennernäs B, Petersson U, Johannessen DC, Sokal M, Pigott K, Yachnin J, Garkavij M, Strang P, Harmenberg J, Bolstad B, Bruland OS (2007) Bone-targeted radium-223 in symptomatic, hormone-refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study. Lancet Oncol 8:587–594CrossRefGoogle Scholar
  15. 15.
    Larsen RH, Bruland OS (2003) Targeting of skeletal metastases by alpha-emitter radium-223. Targeted Cancer Therapies: 195–202Google Scholar
  16. 16.
    Dahle J, Borrebak J, Jonasdottir TJ, Hjelmerud AK, Melhus KB, Bruland OS, Press OW, Larsen RH (2007) Targeted cancer therapy with a novel low-dose rate α-emitting radioimmuno-conjugate. Blood 110:2049–2056CrossRefGoogle Scholar
  17. 17.
    Patel AR, Koshy J (1968) Growth of barium sulphate single crystals by chemically reacted flux method. J Cryst Growth 2:128–130CrossRefGoogle Scholar
  18. 18.
    Mitsugashira T, Yamana H, Suzuki S (1977) The mutual separation of 227Ac, 227Th, 223Ra, and 223Fr by the solvent extraction technique using bis(2-ethylhexyl)phosphoric acid as an extractant. Bull Chem Soc Jpn 50:2913–2916CrossRefGoogle Scholar
  19. 19.
    Alhassanieh O, Abdul-Hadi A, Ghafar M, Aba A (1999) Separation of Th, U, Pa, Ra and Ac from natural uranium and thorium series. Appl Radiat Isot 51:493–498CrossRefGoogle Scholar
  20. 20.
    Henriksen G, Hoff P, Alstad J, Larsen RH (2001) 223Ra for endoradiotherapeutic applications prepared from an immobilized 227Ac/227Th source. Radiochim Acta 89:661–666CrossRefGoogle Scholar
  21. 21.
    Möller T, Bestaoui N, Wierzbicki M, Adams T, Clearfield A (2011) Separation of lanthanum, hafnium, barium and radiotraces yttrium-88 and barium-133 using crystalline zirconium phosphate and phosphonate compounds as prospective materials for a Ra-223 radioisotope generator. Appl Radiat Isot 69:947–954CrossRefGoogle Scholar
  22. 22.
    McAlister DR, Horwitz EP (2011) Chromatographic generator systems for the actinides and natural decay series elements. Radiochim Acta 99:151–159CrossRefGoogle Scholar
  23. 23.
    JCGM 100 (2008) GUM 1995 with minor corrections, evaluation of measurement data—guide to the expression of uncertainty in measurement. JCGMGoogle Scholar
  24. 24.
    Kragten J (1994) Calculating standard deviations and confidence intervals with a universally applicable spreadsheet technique. Analyst 119:2161–2165CrossRefGoogle Scholar
  25. 25.
    Putnis A (2009) Mineral replacement reactions. In: Oelkers EH, Schott J (eds) Reviews in mineralogy and geochemistry, vol 70. Mineralogical Society of America, pp 87–124Google Scholar
  26. 26.
    Gordon L, Rowley K (1957) Coprecipitation of radium with barium sulfate. Anal Chem 29:34–37CrossRefGoogle Scholar
  27. 27.
    McIntire WL (1963) Trace element partition coefficients—a review of theory and applications to geology. Geochim Cosmochim Acta 27:1209–1264CrossRefGoogle Scholar
  28. 28.
    Curti E, Fujiwara K, Iijima K, Tits J, Cuesta C, Kitamura A, Glaus MA, Müller W (2010) Radium uptake during barite recrystallization at 23 ± 2°C as a function of solution composition: an experimental 133Ba and 226Ra tracer study. Geochim Cosmochim Acta 74:3553–3570CrossRefGoogle Scholar
  29. 29.
    Hedström H, Persson I, Ekberg C, Skarnemark G (2013) Characterization of radium sulphate. J Nucl Chem (submitted)Google Scholar
  30. 30.
    Persson I, Sandstrom M, Yokoyama H, Chaudhry M (1995) Structure of the solvated strontium and barium ions in aqueous, dimethyl-sulfoxide and pyridine solution, and crystal-structure of strontium and barium hydroxide octahydrate. Z Naturforsch A 50:21–37Google Scholar
  31. 31.
    Persson I, Lyczko K, Lundberg D, Eriksson L, Placzek A (2011) Coordination chemistry study of hydrated and solvated lead(II) ions in solution and solid state. Inorg Chem 50:1058–1072CrossRefGoogle Scholar
  32. 32.
    Kulik DA, Wagner T, Dmytrieva SV, Kosakowski G, Hingerl FF, Chudenko KV, Berner UR (2013) GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Comput Geosci 17:1–24Google Scholar
  33. 33.
    Wagner T, Kulik DA, Hingerl FF, Dmytrieva SV (2012) GEM-Selektor geochemical modeling package: TSolMod library and data interface for multicomponent phase models. Can Mineral 50:701–723CrossRefGoogle Scholar
  34. 34.
    Hummel W, Berner U, Curti E, Pearson FJ, Thoenen T (2002) Nagra/PSI chemical thermodynamic data base 01/01. Radiochim Acta 90:805–813CrossRefGoogle Scholar
  35. 35.
    Vinograd VL, Brandt F, Rozov K, et al (2013) Solid-aqueous equilibrium in the BaSO4-1 RaSO4-H2O system: first-principles calculations and a thermodynamic assessment. Geochim Cosmochim Acta (submitted)Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Natallia Torapava
    • 1
  • Henrik Ramebäck
    • 1
    • 2
  • Enzo Curti
    • 3
  • Petra Lagerkvist
    • 2
  • Christian Ekberg
    • 1
  1. 1.Department of Chemical and Biological Engineering, Nuclear ChemistryChalmers University of TechnologyGothenburgSweden
  2. 2.Division of CBRN Defence and SecuritySwedish Defence Research AgencyUmeåSweden
  3. 3.Laboratory for Waste Management, Nuclear Energy and Safety Research DepartmentPaul Scherrer InstituteVilligenSwitzerland

Personalised recommendations