Raman spectroscopic study on NpO2 +–Ca2+ interaction in highly concentrated calcium chloride

  • Toshiyuki Fujii
  • Akihiro Uehara
  • Yoshihiro Kitatsuji
  • Hajimu Yamana


Coordination circumstance of neptunyl ion in concentrated CaCl2 solutions was analyzed by Raman spectrometry. Besides the symmetric stretch (ν1) mode of NpO2 + and NpO2 2+, the asymmetric stretch (ν3) mode of NpO2 + was found. The Raman intensity of the ν3 mode increased with the concentration of CaCl2 in the system. This would be attributable to the cation–cation interaction between Np(V) and Ca(II).


Raman spectrometry Neptunium Neptunyl Calcium chloride Cation–cation interaction 



This research was partly supported by Grants-in-Aid for Scientific Research (No. 23760827) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.


  1. 1.
    Sullivan JC, Hindman JC, Zielen AJ (1961) J Am Chem Soc 83:3373–3378CrossRefGoogle Scholar
  2. 2.
    Sullivan JC (1962) J Am Chem Soc 84:4256–4259CrossRefGoogle Scholar
  3. 3.
    Sullivan JC (1964) Inorg Chem 3:315–319CrossRefGoogle Scholar
  4. 4.
    Rykov AG, Frolov AA (1972) Radiokhimiya 14:717–719Google Scholar
  5. 5.
    Rykov AG, Frolov AA (1972) Radiokhimiya 14:709–717Google Scholar
  6. 6.
    Murmann K, Sullivan JC (1967) Inorg Chem 6:892–900CrossRefGoogle Scholar
  7. 7.
    Frolov AA, Rykov AG (1974) Radiokhimiya 16:556–557Google Scholar
  8. 8.
    Stoyer NJ, Hoffman DC, Silva RJ (2000) Radiochim Acta 88:279–282CrossRefGoogle Scholar
  9. 9.
    Madic C, Begun GM, Hobart DE, Hahn RL (1983) Radiochim Acta 34:195–202Google Scholar
  10. 10.
    Stout BE, Choppin GR (1993) Radiochim Acta 61:65–67Google Scholar
  11. 11.
    Skanthakumar S, Antonio MR, Soderholm L (2008) Inorg Chem 47:4591–4595CrossRefGoogle Scholar
  12. 12.
    Guillaume B, Begun GM, Hahn RL (1982) Inorg Chem 21:1159–1166CrossRefGoogle Scholar
  13. 13.
    Grégoire-Kappenstein AC, Moicy Ph, Cote G, Blanc P (2003) Radiochim Acta 91:665–672CrossRefGoogle Scholar
  14. 14.
    Den Auwer C, Grégoire-Kappenstein AC, Moisy Ph (2003) Radiochim Acta 91:773–776CrossRefGoogle Scholar
  15. 15.
    Madic C, Guillaume B, Morisseau JC, Moulin JP (1979) J Inorg Nucl Chem 41:1027–1031CrossRefGoogle Scholar
  16. 16.
    Guillaume B, Hahn RL, Harten AH (1983) Inorg Chem 22:109–111CrossRefGoogle Scholar
  17. 17.
    Xian L, Tian G, Zheng W, Rao L (2012) Dalton Trans 41:8532–8538CrossRefGoogle Scholar
  18. 18.
    Marcus Y (1985) Ion solvation. Wiley, ChichesterGoogle Scholar
  19. 19.
    Fujii T, Okude G, Uehara A, Sekimoto S, Hayashi H, Akabori M, Minato K, Yamana H (2011) J Radioanal Nucl Chem 288:181–187CrossRefGoogle Scholar
  20. 20.
    Uehara A, Shirai O, Fujii T, Nagai T, Yamana H (2012) J Appl Electrochem 42:455–461CrossRefGoogle Scholar
  21. 21.
    Millero FJ, Huang F, Graham TB (2003) J Soln Chem 32:473CrossRefGoogle Scholar
  22. 22.
    Yoshida Z, Johnson SG, Kimura T, Krsul JR (2006) In: Morss LR, Edelsen NM, Fugar J, Katz JJ (eds) The chemistry of actinide and transactinide elements, 3rd edn. Springer, DordrechtGoogle Scholar
  23. 23.
    Basile LJ, Sullivan JC, Ferraro JR, LaBonville P (1974) Appl Spectrosc 28:142–145CrossRefGoogle Scholar
  24. 24.
    Fujii T, Okude G, Uehara A, Yamana H (2010) IOP Conf Ser Mater Sci Eng 9:012061(7)CrossRefGoogle Scholar
  25. 25.
    Madic C, Begun GM, Hobart DE, Hahn RL (1984) Inorg Chem 23:1914–1921CrossRefGoogle Scholar
  26. 26.
    Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds. John Wiley and Sons, New YorkGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Toshiyuki Fujii
    • 1
  • Akihiro Uehara
    • 1
  • Yoshihiro Kitatsuji
    • 2
  • Hajimu Yamana
    • 1
  1. 1.Research Reactor InstituteKyoto UniversitySennan, OsakaJapan
  2. 2.Nuclear Science and Engineering DirectorateJapan Atomic Energy AgencyTokai, IbarakiJapan

Personalised recommendations