Non destructive evaluation of selected polymers by multiple scattering of 662 keV gamma rays

  • K. Ravindraswami
  • K. U. Kiran
  • K. M. Eshwarappa
  • H. M. Somashekarappa


In this paper, multiple scattering of 662 keV gamma photons from targets of Carbon, Aluminium, Iron, Copper and polymers (Polypropylene, Polycarbonate, Polymethyl methacrylate, Polytetraflouroethylene and Polyvinyl chloride) is studied experimentally. Backscattered photons are detected by a NaI(Tl) detector placed at an angle of 90° to the incident beam. The single scattered events are reconstructed analytically to extract multiple scattered photons from the measured spectra. We observe that the number of backscattered photons increases with an increase in target thickness, and saturates at a particular value of the target thickness. This saturation thickness decreases with increasing atomic number of the target. The saturation thickness of the multiple scattering is used to assign effective atomic number of polymers. The experimental results are compared with the results obtained by Monte Carlo N-particle simulation code.


Single and multiple Compton scattering Saturation thickness MCNP simulation Effective atomic number Polymers 



Authors are grateful to University Grants Commission, Government of India for providing financial assistance in the form of Major Research Project. Kiran K U would like to thank University Grants Commission for providing FIP teacher fellowship. The experiment was carried out in Center for Application of Radioisotopes and Radiation Technology (CARRT), Mangalore University.


  1. 1.
    Icelli O (2006) Practical method for experimental effective atomic number in the coherent to Compton scattering ratio. J Quant Spectrosc Radiat Transf 101:151–158CrossRefGoogle Scholar
  2. 2.
    Gowda S, Krishnaveni S, Yashoda T, Umesh TK, Ramakrishna Gowda (2004) Photon mass attenuation coefficients, effective atomic numbers and electron densities of some thermoluminescent dosimetric compounds. Pramana 63:529–541CrossRefGoogle Scholar
  3. 3.
    Manjunathaguru V, Umesh TK (2006) Effective atomic numbers and electron densities of some biologically important compounds containing H, C, N and O in the energy range 145–1330 keV. J Phys B At Mol Opt Phys 39:3969–3981CrossRefGoogle Scholar
  4. 4.
    Singh M, Singh B, Sandhu BS (2009) Investigations of multiple scattering of 320 keV γ rays: a new technique for assigning effective atomic number to composite material. Phys Scr 79:035101CrossRefGoogle Scholar
  5. 5.
    Singh G, Singh M, Sandhu BS, Singh B (2008) Experimental investigations of multiple scattering of 662 keV gamma photons in elements and binary alloys. Appl Radiat Isot 66:1151–1159CrossRefGoogle Scholar
  6. 6.
    Sabharwal AD, Singh B, Sandhu BS (2009), Investigations of multiple backscattering and albedos of 1.12 MeV gamma photons in elements and alloys. Nucl Instrum Methods Phys Res B 267:151–156CrossRefGoogle Scholar
  7. 7.
    Singh M, Singh G, Singh B, Sandhu BS (2008) Experimental observation of energy dependence of saturation thickness of multiply scattered gamma photons. Radiat Phys Chem 77:991–995CrossRefGoogle Scholar
  8. 8.
    Akar Tarim U, Ozmutlu EN, Gurler O, Yalcin S (2013) Monte Carlo analysis of multiple backscattering of gamma rays. J Radioanal Nucl Chem 295:901–905CrossRefGoogle Scholar
  9. 9.
    Singh M, Singh G, Sandhu BS, Singh B (2006) Effect of detector collimator and sample thickness on 0.662 MeV multiply Compton-scattered gamma rays. Appl Radiat Isot 64:373–378CrossRefGoogle Scholar
  10. 10.
    Paramesh L, Venkataramaiah P, Gopala K Sanjeeviah H (1983) Z-dependence of saturation depth for multiple backscattering of 662 keV photons from thick samples. Nucl Instrum Methods 206:327–330CrossRefGoogle Scholar
  11. 11.
    Pitkanen T, Laundy D Holt RS, Cooper MJ (1986) The multiple scattering profile in gamma ray Compton studies. Nucl Instrum Methods Phys Res A 251:536–544CrossRefGoogle Scholar
  12. 12.
    Tanner AC, Epstein IR (1976) Multiple scattering in the Compton effect. I. Analytic treatment of angular distributions and total scattering probabilities. Phys Rev A 13:335–348CrossRefGoogle Scholar
  13. 13.
    Halonen V, Williams B (1979) Multiple scattering in the compton effect, relativistic cross section for double scattering. Phys Rev B 19:1990–1998CrossRefGoogle Scholar
  14. 14.
    Felsteiner J, Pattison P, Cooper MJ (1974) Effect of multiple scattering on experimental Compton profiles: a Montel Carlo calculation. Philos Maj 30:537–548CrossRefGoogle Scholar
  15. 15.
    Nghiep TD, Khai NT, Cong NT, Minh DTN (2013) Characterization of a material by probability of linear scattering using effect of target thickness. J Radioanal Nucl Chem 295:1039–1042CrossRefGoogle Scholar
  16. 16.
    Crouthamel CE (1970) Applied gamma ray spectroscopy, 2nd edn, Pergamon Press, New YorkGoogle Scholar
  17. 17.
    Ravindraswami K, Kiran KU, Eshwarappa KM, Somashekarappa HM (2013), Experimental observations of Z-dependence of saturation thicknesses of 662 keV gamma rays in metals and glasses. Indian J Phys 87:1141–1147CrossRefGoogle Scholar
  18. 18.
    Knoll GF (1988) Radiation detection and measurements, 3rd edn. Wiley, New YorkGoogle Scholar
  19. 19.
    Taylor ML, Smith RL, Dossing F, Franich RD (2012) Robust calculation of effective atomic numbers: the auto-Z eff software. Med Phys 39:1769–1778CrossRefGoogle Scholar
  20. 20.
    Faiz M Khan (2003) The Physics of radiation therapy, 3rd edn. Lippincott Williams & Wilkins, Philadelphia.Google Scholar
  21. 21.
    Briesmeister JF (1993) MCNP a general purpose Monte Carlo N-particle transport code, Version 4A, Los Alamos National Laboratory report LA-12625Google Scholar
  22. 22.
    Kucuk N, Cakir M, Isitman NA (2013) Mass attenuation coefficients, effective atomic numbers and effective electron densities for some polymers. Radiat Prot Dosim 153(1):127134CrossRefGoogle Scholar
  23. 23.
    Naydenov SV, Ryzhikov VD, Smith CF (2004) Direct reconstruction of the effective atomic number of materials by the method of multi-energy radiography. Nucl Instrum Methods Phys Res B 215:552560CrossRefGoogle Scholar
  24. 24.
    Kumar SP, Manjunathaguru V, Umesh TK (2010) Effective atomic numbers of some H-, C-, N- and O-based composite materials derived from differential incoherent scattering cross-sections. PRAMANA J Phys 74(4):555–562CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • K. Ravindraswami
    • 1
  • K. U. Kiran
    • 2
  • K. M. Eshwarappa
    • 2
  • H. M. Somashekarappa
    • 3
  1. 1.St Aloysius College (Autonomous)MangaloreIndia
  2. 2.Government Science CollegeHassanIndia
  3. 3.University Science Instrumentation CenterMangalore UniversityMangaloreIndia

Personalised recommendations