Natural radioactivity level and radiological hazard assessment of commonly used building material in Xining, China

  • Shigang Chao
  • Xinwei Lu
  • Mengmeng Zhang
  • Long Pang


Natural radioactivity of the commonly used building materials in Xining of China was measured using gamma-ray spectrometer system comprising a NaI(Tl) detector. Radioactivity concentrations of 226Ra, 232Th and 40K in the studied samples range from 11.6 to 120.6, 10.2 to 107.1 and 228.0 to 1,036.2 Bq kg−1, respectively. The concentrations for these natural radionuclides were compared with the reported data of other countries and the mean value for soil. Radium equivalent activity, indoor air absorbed dose rate, annual effective dose rate as well as external and internal hazard indices were calculated to assess radiological hazards for people living in dwelling made of the building materials. The radiological hazard assessment results show that the studied building materials, except for some aerated concrete block samples, are safe for use in construction of dwellings in the study area and do not pose any significant source of radiation hazard.


Natural radioactivity Dose assessment Radiation risk Radium equivalent activity Building materials 



This work was supported by the Fundamental Research Funds for the Central Universities through Grants GK200901008. All experiments were finished in the environmental radioactivity laboratory of Shaanxi Normal University. Gratitude is expressed to G. Yang and C. Zhao for their help with sample preparation and experiments. The authors also thank the editor and anonymous reviewers for their insightful suggestions and critical reviews of the manuscript.


  1. 1.
    Ahmad N, Matiullah, Khatibeh AJAH, Ma’ly A, Kenwy MA (1997) Radiat Meas 28:341–344CrossRefGoogle Scholar
  2. 2.
    Matiullah, Ahad A, Rehman S, Rehman S, Feheem M (2004) Radiat Prot Dosim 112:443–447CrossRefGoogle Scholar
  3. 3.
    Kurnaz A, Küçükömeroğlu B, Keser R, Okumusoglu NT, Korkmaz F, Karahan G, Çevik U (2007) Appl Radiat Isot 65:1281–1289CrossRefGoogle Scholar
  4. 4.
    Faheem M, Mujahid SA, Matiullah (2008) Radiat Meas 43:1443–1447CrossRefGoogle Scholar
  5. 5.
    Tufan MÇ, Dişci T (2013) Radiat Prot Dosim 156:87–92CrossRefGoogle Scholar
  6. 6.
    Zubair M, Verma D, Azam A, Roy S (2013) Radiat Prot Dosim 155:467–473CrossRefGoogle Scholar
  7. 7.
    Rahman SU, Rafique M, Jabbar A, Matiullah (2013) Radiat Prot Dosim 153:352–360CrossRefGoogle Scholar
  8. 8.
    Gharbi F, Oueslati M, Abdelli W, Samaali M, Tekaya MB (2012) Radiat Prot Dosim 152:418–422CrossRefGoogle Scholar
  9. 9.
    Al-Sulaiti H, Alkhomashi N, Al-Dahan N, Al-Dosari M, Bradley DA, Bukhari S, Matthews M, Regan PH, Santawamaitre T (2011) Nucl Instrum Methods Phys Res A 652:915–919CrossRefGoogle Scholar
  10. 10.
    Baykara O, Karatepe Ş, Doğru M (2011) Radiat Meas 46:153–158CrossRefGoogle Scholar
  11. 11.
    Senthikumar G, Ravisankar R, Vanasundari K, Vijayalakshmi I, Vijiaayagopal P, Jose MT (2013) Radiat Phys Chem 88:45–48CrossRefGoogle Scholar
  12. 12.
    Moharram BM, Suliman MN, Zahran NF, Shennawy SE, El Sayed AR (2012) Appl Radiat Isot 70:241–248CrossRefGoogle Scholar
  13. 13.
    El-Taher A, Makhluf S, Nossair A, Abdel Halim AS (2010) Appl Radiat Isot 68:169–174CrossRefGoogle Scholar
  14. 14.
    Sharaf JM, Hamideen MS (2013) Appl Radiat Isot 80:61–66CrossRefGoogle Scholar
  15. 15.
    Kumar V, Ramachandran TV, Prasad R (1999) Appl Radiat Isot 51:93–96CrossRefGoogle Scholar
  16. 16.
    Ding X, Lu X, Zhao C, Yang G, Li N (2013) Radiat Prot Dosim 155:374–379CrossRefGoogle Scholar
  17. 17.
    Yang G, Lu X, Zhao C, Li N (2013) Radiat Prot Dosim 155:512–516CrossRefGoogle Scholar
  18. 18.
    Lu X, Li N, Yang G, Zhao C (2013) Health Phys 104:325–331CrossRefGoogle Scholar
  19. 19.
    Kumar A, Kumar M, Singh B, Singh S (2003) Radiat Meas 36:465–469CrossRefGoogle Scholar
  20. 20.
    Ahmed NK (2005) J Environ Radioact 83:91–99CrossRefGoogle Scholar
  21. 21.
    Amrani D, Tahtat M (2001) Appl Radiat Isot 54:687–689CrossRefGoogle Scholar
  22. 22.
    Mavi B, Akkurt I (2010) Radiat Phys Chem 79:933–937CrossRefGoogle Scholar
  23. 23.
    Ngachin M, Garavaglia M, Giovani C, Njock MGK, Nourreddine A (2007) Radiat Meas 42:61–67CrossRefGoogle Scholar
  24. 24.
    Flores OB, Estrada AM, Suárez RR, Zerquera JT, Pérez AH (2008) J Environ Radioact 99:1834–1837CrossRefGoogle Scholar
  25. 25.
    Stoulos S, Manolopoulou M, Papastefanou C (2003) J Environ Radioact 69:225–240CrossRefGoogle Scholar
  26. 26.
    Ravisankar R, Vanasundari K, Chandrasekaran A, Rajalakshmi A, Suganya M, Vijayagopal P, Meenakshisundaram V (2012) Appl Radiat Isot 70:699–704CrossRefGoogle Scholar
  27. 27.
    Hussain HH, Hussain RO, Yousef RM, Shamkhi Q (2010) J Radioanal Nucl Chem 284:3–47CrossRefGoogle Scholar
  28. 28.
    Lu X, Yang G, Ren C (2012) Radiat Phys Chem 81:780–784CrossRefGoogle Scholar
  29. 29.
    Zhao C, Lu X, Li N, Yang G (2012) Radiat Prot Dosim 152:434–437CrossRefGoogle Scholar
  30. 30.
    Zhu A (2000) J Environ Health 17(3):144 in ChineseGoogle Scholar
  31. 31.
    UNSCEAR (2000) Sources, effects and risks of ionizing radiation. United Nations Scientific Committee on Effects of Atomic Radiation, New YorkGoogle Scholar
  32. 32.
    Beretka J, Mathew PJ (1985) Health Phys 48:87–95CrossRefGoogle Scholar
  33. 33.
    European Commission (1999) Radiological protection principles concerning the natural radioactivity of buildings materials. Radiation protection report 112. ECGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Shigang Chao
    • 1
  • Xinwei Lu
    • 1
  • Mengmeng Zhang
    • 1
  • Long Pang
    • 1
  1. 1.School of Tourism and EnvironmentShaanxi Normal UniversityXi’anPeople’s Republic of China

Personalised recommendations