The NAA method at Polytechnique Montreal: an efficient alternative way to use the k 0 NAA models

  • C. Chilian
  • G. Kennedy


At Ecole Polytechnique Montreal, the philosophy in performing neutron activation analysis (NAA) is long-term and application oriented. Thinking long-term implies a good understanding of the fundamentals of the method, of the samples, of the tools, reactor and detectors, and there must be constant innovation that is experimentally validated with extensive measurements. Application oriented means a NAA method developed to provide users with fast, sensitive, accurate and reliable analyses for various types of materials. This philosophy dictates the manner in which the developments in the areas of NAA software, peak-area calculation, dead-time correction, detection efficiency model, k 0 and Q 0 values, neutron moderation and neutron self-shielding are carried out. This paper presents a survey of the Laboratory’s methodology, reviewing a few of its unique features such as detector efficiency calibration and sample related perturbations of the neutron activation. These features are used as examples to provide the reader with an understanding of the philosophy and the evolution of the NAA method at Ecole Polytechnique.


Neutron activation analysis Improved relative method k0 method k0 values Q0 values 


  1. 1.
    Girardi F, Guzzi G, Pauly J (1965) Anal Chem 37:1085–1092CrossRefGoogle Scholar
  2. 2.
    Hancock RGV (1976) Anal Chem 48:1443–1445CrossRefGoogle Scholar
  3. 3.
    Bergerioux C, Kennedy G, Zikovsky L (1979) J Radioanal Nucl Chem 50:229–234CrossRefGoogle Scholar
  4. 4.
    Kennedy G, St-Pierre J (1993) J Radioanal Nucl Chem 169:471–481CrossRefGoogle Scholar
  5. 5.
    Kennedy G (1990) Nucl Instrum Methods A299:349–353CrossRefGoogle Scholar
  6. 6.
    Kennedy G, St-Pierre J, Wang K, Zhang Y, Preston J, Grant C, Vutchkov M (2000) J Radioanal Nucl Chem 245:167–172CrossRefGoogle Scholar
  7. 7.
    Gunnink R, Niday JB, (1979) Proc. ERDA Symposium on X- and Gamma-Ray Sources and Applications, Ann Arbor Science Publishers , Ann Arbor, Mich., p 55Google Scholar
  8. 8.
    Kennedy G, St-Pierre J (1997) J Radioanal Nucl Chem 215:235–239CrossRefGoogle Scholar
  9. 9.
    van Sluijs R, Bossus D, Blaauw M, Kennedy G, De Wispelaere A, van Lierde S, De Corte F (2000) J Radioanal Nucl Chem 244:675–680CrossRefGoogle Scholar
  10. 10.
    Kennedy G, St-Pierre J (1999) Biol Trace Element Res 71:443–451CrossRefGoogle Scholar
  11. 11.
    Kennedy G, St-Pierre J (2003) J Radioanal Nucl Chem 257:475–480CrossRefGoogle Scholar
  12. 12.
    St-Pierre J, Kennedy G (2006) Nucl Instrum Methods A564:669–674CrossRefGoogle Scholar
  13. 13.
    De Corte F, Simonits A (2003) At Data Nucl Data Tables 85:47–67CrossRefGoogle Scholar
  14. 14.
    Kennedy G (1995) J Radioanal Nucl Chem 193:239–245CrossRefGoogle Scholar
  15. 15.
    St-Pierre J, Kennedy G (2004) J Radioanal Nucl Chem 259:431–434CrossRefGoogle Scholar
  16. 16.
    St-Pierre J, Kennedy G (2007) J Radioanal Nucl Chem 271:283–287CrossRefGoogle Scholar
  17. 17.
    Martinho E, Gonçalves IF, Salgado J (2003) Appl Radiat Isot 58:371–375CrossRefGoogle Scholar
  18. 18.
    Chilian C, St-Pierre J, Kennedy G (2008) J Radioanal Nucl Chem 278:745–749CrossRefGoogle Scholar
  19. 19.
    Chilian C, Kennedy G (2012) J Radioanal Nucl Chem 293:179–183CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  1. 1.Ecole PolytechniqueMontrealCanada

Personalised recommendations