Advertisement

Transport behaviour of the lanthanide 152Eu(III), 153Gd(III) and 170Tm(III) and transplutonium element 254Es(III), 244Cm(III), 241Am(III), 249Cf(III) and 249Bk(III) ions in aqueous solutions at 298 K

  • N. Ouerfelli
  • D. Das
  • H. Latrous
  • M. Ammar
  • J. Oliver
Article

Abstract

Ionic self-diffusion coefficients (D) for trivalent radiotracers, lanthanide and actinide ions have been determined in concentrated aqueous solutions of supporting electrolytes of Gd(NO3)3–HNO3 or Nd(ClO3)4–HClO4 up to 1.5 mol L−1 at 298.15 K and pH 2.50 by the open-end capillary method. The data obtained in large range of concentrations, allow to derive the limiting value D°, the validity of the Onsager limiting law and a more extended law. This study contributes to demonstrate similarities in transport and structure properties between 4f and 5f trivalent ions explained by a similar electronic configuration, ionic radius and hydration number. An empirical equation is suggested for predicting ionic hydration number with a good precision.

Keywords

Self-diffusion coefficient Open end capillary method Lanthanide and actinide trivalent ions Onsager law Asymmetrical 3:1 electrolyte 

References

  1. 1.
    Latrous H, Oliver J, Chemla M (1998) Zeits für Physika Chemie 202:195Google Scholar
  2. 2.
    Latrous H, Oliver J (1992) J Radioanal Nucl Chem 156(2):291CrossRefGoogle Scholar
  3. 3.
    Latrous H, Ammar M, M’Halla J (1982) Radiochem Radioanal Lett 53(1):33Google Scholar
  4. 4.
    Onsager L, Kim SK (1957) J Phys Chem 61:215CrossRefGoogle Scholar
  5. 5.
    Latrous H, Besbes R, Ouerfelli N (2008) J Mol Liq 138:51CrossRefGoogle Scholar
  6. 6.
    Ouerfelli N, Latrous H, Ammar M (2009) J Mol Liq 146:52CrossRefGoogle Scholar
  7. 7.
    Latrous H, Oliver J (1999) J Mol Liq 81:115CrossRefGoogle Scholar
  8. 8.
    David F, Fourest B (1997) New J Chem 21:167Google Scholar
  9. 9.
    Antonio MR, Williams CW, Soderholm L (2002) Radiochim Acta 90:851CrossRefGoogle Scholar
  10. 10.
    Tilkens L, Randall K, Sun J, Berry MT, May PS, Yamase T (2004) J Phys Chem 108:6624CrossRefGoogle Scholar
  11. 11.
    Lindqvist-Reis P, Klenze R, Schubert G, Fanghänel T (2005) J Phys Chem 109:3077CrossRefGoogle Scholar
  12. 12.
    M’Halla J, Chemla M, Bury R, David F (1988) J Chim Phys 85:121Google Scholar
  13. 13.
    Mauerhofer E, Zhernosekov K, Rösch F (2003) Radiochim Acta 91:473CrossRefGoogle Scholar
  14. 14.
    Floris FM, Tani A (2001) J Chem Phys 115:4750CrossRefGoogle Scholar
  15. 15.
    Robinson RA, Stokes RH (1970) Electrolytes solutions, 5th edn. Butterworth’s, LondonGoogle Scholar
  16. 16.
    Ouerfelli N, Ammar M, Latrous H (1996) J Phys Condens Matter 8:8173CrossRefGoogle Scholar
  17. 17.
    Ouerfelli N, Mgaidi A, Latrous H, Ammar M, Abderrabba M (2012) Phys Chem Liq 50:222CrossRefGoogle Scholar
  18. 18.
    Besbes R, Ouerfelli N, Abderabba M, Latrous H (2010) IOP Conf Ser Mater Sci Eng 9(012079):1–6. doi: 10.1088/1757-899X/9/1/012079 Google Scholar
  19. 19.
    Besbes R, Ouerfelli N, Latrous H (2010) Plutonium futures—the science code 84208, pp 136–137. ISBN: 978-089448082-9Google Scholar
  20. 20.
    Besbes R, Ouerfelli N, Abderabba M, Lindqvist-Reis P, Latrous H (2012) Mediterr J Chem 1(6):334CrossRefGoogle Scholar
  21. 21.
    Ouerfelli N, Ammar M, Latrous H (1994) J Chim Phys 91:1786Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • N. Ouerfelli
    • 1
    • 2
  • D. Das
    • 3
  • H. Latrous
    • 2
  • M. Ammar
    • 2
  • J. Oliver
    • 4
  1. 1.Department of ChemistryGirls College of ScienceDammamSaudi Arabia
  2. 2.Laboratoire de Biophysique et Technologies Médicales, Institut Supérieur des Technologies Médicales de Tunis, Université de Tunis El ManarTunisTunisia
  3. 3.Department of ChemistryDinhata CollegeDinhata, Cooch BeharIndia
  4. 4.Oak-Ridge National LaboratoryOak RidgeUSA

Personalised recommendations