Advertisement

Development of ion chromatography and capillary electrophoresis methods for the determination of Li in Li–Al alloy

  • V. G. Mishra
  • M. K. Das
  • V. V. Raut
  • S. Jeyakumar
  • R. M. Sawant
  • B. S. Tomar
  • K. L. Ramakumar
Article

Abstract

Two methods were developed for determination Li content in Li–Al alloy by employing ion chromatography (IC) and capillary electrophoresis (CE) without any prior separation of Al matrix. In absence of suitable certified reference material the two methods were used to validate each other. Using a high capacity column and a weaker eluent methane sulphonic acid, it was possible to separate Li in IC without eluting strongly retained Al. The method showed good precision and sensitivity and was extended for analysis of routine samples. In the case of CE using imidazole as co-ion, Li was detected in CE by indirect detection. In view of no interference from Al, samples were analyzed without any matrix separation. The CE method was used successfully for sample analysis and results were compared with IC results.

Keywords

Li analysis Li–Al alloy Ion chromatography Capillary electrophoresis 

References

  1. 1.
    Carconi PL, Caradio S, Moauro A (1991) J Radioanal Nucl Chem 151:357–363CrossRefGoogle Scholar
  2. 2.
    Powell JR, Miles FT, Aronson A, Winsche HE (1973) Studies of fusion reactor blankets with minimum radioactive inventory and with tritium breeding in solid lithium compounds: a preliminary report, Department of Applied Science, Brookhaven National Laboratory Associated Universities Inc., Upton, New YorkGoogle Scholar
  3. 3.
    Mirjana SP, Nebojsa ZP, Momir M (1989) J Anal At Spectrom 4:587–591CrossRefGoogle Scholar
  4. 4.
    Singh RR, Abbas NM (1996) J Chromatogr A 733:93–99CrossRefGoogle Scholar
  5. 5.
    Ulrike N, Hansjorg T (2001) J Chromatogr A 920:201–204CrossRefGoogle Scholar
  6. 6.
    Zerbinati O, Balduzzi F, Dell’Oro V (2000) J Chromatogr A 88:645–650CrossRefGoogle Scholar
  7. 7.
    Kelker A, Amrit P, Mohmad A, Pannakal JP, Kamat HS (2011) J Radioanal Nucl Chem 287:595–601CrossRefGoogle Scholar
  8. 8.
    Reijenga JC (1992) J Radioanal Nucl Chem 163:155–167CrossRefGoogle Scholar
  9. 9.
    Beck W, Engelhardt H (1992) Chromatographia 33:313–316CrossRefGoogle Scholar
  10. 10.
    Pascali JP, Sorio D, Bortolotti F, Tagliaro F (2010) Anal Bioanal Chem 396:2543–2546CrossRefGoogle Scholar
  11. 11.
    Vrouwe EX, Luttge R, Olthuis W, Berg A (2005) Electrophoresis 15:3032–3042CrossRefGoogle Scholar
  12. 12.
    Fukushi K, Minami S, Kitakata M, Nishijima M, Yokota K, Takeda S, Wakida S (2006) Anal Sci 22:1129–1133CrossRefGoogle Scholar
  13. 13.
    Klunder GL, Andrews JE, Church MN, Spear JD, Russo RE, Grant PM, Andresen BD (1998) J Radioanal Nucl Chem 236:14–153CrossRefGoogle Scholar
  14. 14.
    Kosrow Z, Akbar M, Naser F, Khalil F, Vahid M (2003) Turk J Chem 27:71–75Google Scholar
  15. 15.
    Podsiadły H (2008) Polyhedron 27:1563–1572CrossRefGoogle Scholar
  16. 16.
    Staffan S (1997) Pure Appl Chem 69:1549–1570Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • V. G. Mishra
    • 1
  • M. K. Das
    • 1
  • V. V. Raut
    • 1
  • S. Jeyakumar
    • 1
  • R. M. Sawant
    • 1
  • B. S. Tomar
    • 1
  • K. L. Ramakumar
    • 1
  1. 1.Radioanalytical Chemistry DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations