Advertisement

Retention behaviour of Cs(I), Sr(II), Tc(VII) and Np(V) on smectite-rich clay

  • Sharayu Kasar
  • S. Kumar
  • Aishwarya Kar
  • R. K. Bajpai
  • C. P. Kaushik
  • B. S. Tomar
Article

Abstract

The smectite-rich natural clay is being considered as a backfill and buffer material for Indian repository programme. In the present study, batch sorption measurements have been performed at trace concentrations for one of the minor actinide elements [Np(V)] and for the long lived fission products, Cs(I), Sr(II), and Tc(VII) on purified and conditioned smectite-rich clay at varying conditions of pH and ionic strength. In case of Cs(I) and Sr(II) the sorption was found to increase with pH. At any pH the sorption was found to decrease with increasing ionic strength of the suspension maintained with NaCl. Further, at any pH the sorption of Sr(II) is less than the corresponding value for Cs(I). This is indicative of effect of size selectivity on the sorption by the clay. Tc(VII), on the other hand, is poorly retained by the clay, which can be explained in terms of the negative charge on the TcO4 ion, which has negligible interaction with the predominantly negatively charged clay surface. In the case of Np(V), the sorption was found to increase albeit, slowly compared to Cs(I) and Sr(II) with pH, and it with no effect of ionic strength on the sorption at all pH values. This suggests that Np(V) primarily interacts with the surface sites via inner sphere complexation mechanism.

Keywords

137Cs 85,89Sr 239Np 95mTc Smectite clay Batch sorption Ionic strength effect 

References

  1. 1.
    Cornell RM (1993) J Radioanal Nucl Chem 171:483–500CrossRefGoogle Scholar
  2. 2.
    Jedináková-Křížová V (1996) J Radioanal Nucl Chem 208:559–575CrossRefGoogle Scholar
  3. 3.
    Xiangke W, Wenming D, Jinzhou D, Zuyi T (1999) J Radioanal Nucl Chem 240:783–787CrossRefGoogle Scholar
  4. 4.
    Vejsada J, Vokal A, Vopalka D, Filipska H (2006) Czechoslov J Phys 56:D73–D79CrossRefGoogle Scholar
  5. 5.
    Filipská H, Štamberg K (2006) J Radioanal Nucl Chem 270:531–542CrossRefGoogle Scholar
  6. 6.
    Wersin P, Soler JM, Van Loon L, Eikenberg J, Baeyens B, Grolimund D, Gimmi T, Dewonck S (2008) Appl Geochem 23:678–691CrossRefGoogle Scholar
  7. 7.
    Galamboš M, Kufčáková J, Rajec P (2009) J Radioanal Nucl Chem 281:485–492CrossRefGoogle Scholar
  8. 8.
    Galamboš M, Paučová V, Kufčáková J, Rosskopfová O, Rajec P, Adamcova R (2010) J Radioanal Nucl Chem 284:55–64CrossRefGoogle Scholar
  9. 9.
    Wang XK (2003) J Radioanal Nucl Chem 258:315–319CrossRefGoogle Scholar
  10. 10.
    Xu D, Chen CL, Wang XK (2006) J Radioanal Nucl Chem 267:357–362CrossRefGoogle Scholar
  11. 11.
    Xiongxin D, Zuyi T (1999) J Radioanal Nucl Chem 242:727–730CrossRefGoogle Scholar
  12. 12.
    Tkáč P, Kopunec R, Macášek F, Skrašková S (2000) J Radioanal Nucl Chem 246:527–531CrossRefGoogle Scholar
  13. 13.
    Wang X, Tan X, Ning Q, Chen C (2005) Appl Radiat Isot 62:759–764CrossRefGoogle Scholar
  14. 14.
    Vinsova H, Konirova R, Koudelkova M, Jedinakova-Krizova V (2004) J Radioanal Nucl Chem 261:407–413CrossRefGoogle Scholar
  15. 15.
    Baik MH, Kim SS, Lee JK, Lee SY, Kim GY, Yun ST (2010) J Radioanal Nucl Chem 283:337–345CrossRefGoogle Scholar
  16. 16.
    Aksoyoglu S, Burkart W, Goerlich W (1991) J Radioanal Nucl Chem 149:119–122CrossRefGoogle Scholar
  17. 17.
    Sabodina MN, Kalmykov SN, Sapozhnikov YA, Zakharova EV (2006) J Radioanal Nucl Chem 270:349–355CrossRefGoogle Scholar
  18. 18.
    Weijuan L, Zuyi T, Liangtian G, Shushen L (2003) Radiochim Acta 91:575–582CrossRefGoogle Scholar
  19. 19.
    Fröhlich DR, Amayri S, Drebert J, Reich T (2011) Radiochim Acta 99:71–77CrossRefGoogle Scholar
  20. 20.
    Amayri S, Jermolajev A, Reich T (2011) Radiochim Acta 99:349–357CrossRefGoogle Scholar
  21. 21.
    Mulyutin VV, Gelis VM, Nekrasova NA, Kononenko OA, Vezentsev AI, Volovicheva AN, Korol’kova VS (2012) Radiochemistry 54:75–78CrossRefGoogle Scholar
  22. 22.
    Pente AS (2010) Characterisation of swelling clay minerals for evaluation of their suitability as buffer/backfill material for nuclear waste repository, Ph.D. Thesis, Mumbai UniversityGoogle Scholar
  23. 23.
    Kumar S, Pente AS, Kaushik CP, Bajpai RK, Tomar BS (2011) In: Proceedings of 13th international conference on the chemistry and migration behaviour of actinides and fission products in the geosphere, Beijing, Sept 18–23, p 294Google Scholar
  24. 24.
    Kumar S, Kasar S, Tomar BS (2013) DAE-BRNS symposium on nuclear and radiochemistry, Govt. Model Science College, Jabalpur, Feb 19–23, p 577Google Scholar
  25. 25.
    Kumar S, Rawat N, Tomar BS, Manchanda VK, Ramanathan S (2007) J Radioanal Nucl Chem 274:229–231CrossRefGoogle Scholar
  26. 26.
    Jain A, Kumar S, Rawat N, Tomar BS, Manchanda VK, Ramanathan S (2007) Radiochim Acta 95:501–506CrossRefGoogle Scholar
  27. 27.
    Kasar S, Kumar S, Kar A, Krishnan K, Kulkarni NK, Tomar BS (2012) J Radioanal Nucl Chem 294:103–107CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Sharayu Kasar
    • 1
  • S. Kumar
    • 1
  • Aishwarya Kar
    • 1
  • R. K. Bajpai
    • 2
  • C. P. Kaushik
    • 3
  • B. S. Tomar
    • 1
  1. 1.Radioanalytical Chemistry DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Technology Development DivisionBhabha Atomic Research CentreMumbaiIndia
  3. 3.Waste Management DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations