Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 299, Issue 3, pp 1589–1595 | Cite as

Surface modification to improve the sorption property of U(VI) on mesoporous silica

  • Lijuan Song
  • Yulong Wang
  • Lu Zhu
  • Bolong Guo
  • Suwen Chen
  • Wangsuo Wu
Article

Abstract

Polyoxometalates K7[α-PW11O39]·14H2O (PW11) modified mesoporous silica (MCM-48) with cubic structure, was prepared by impregnation and calcination methods. The modified mesoporous silica sorbent (PW11/MCM-48) was studied as a potential adsorbent for U(VI) from aqueous solutions. MCM-48 and PW11/MCM-48 were confirmed by X-ray diffraction and nitrogen physisorption techniques. The results indicate the original keggin structure of PW11 and mesoporous structure of MCM-48 are maintained after supporting PW11 on mesoporous silica MCM-48. The effects of contact time, solid-to-liquid ratio (m/V), solution pH and ionic strength on U(VI) sorption behaviors of the pure and modified mesoporous silicas were also studied. Typical sorption isotherms such as Langmuir and Freundlich isotherms were determined for sorption process. The results suggest that the sorption of U(VI) on MCM-48 or PW11/MCM-48 are strongly dependent on pH values but independent of ionic strength. The sorption capacity of PW11/MCM-48 for U(VI) is about ten times more than that of MCM-48.

Keywords

Mesoporous silica Modify Polyoxometalates Sorption U(VI) 

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China (21101082, J1210001) and Fundamental Research Funds for the Central University (Lzujbky-2013-55).

References

  1. 1.
    Zhang YY, Zhao HG, Fan QH, Zheng XJ, Li P, Liu SP, Wu WS (2011) J Radioanal Nucl Chem 288:395–404CrossRefGoogle Scholar
  2. 2.
    Yuan LY, Liu YL, Shi WQ, Li ZJ, Lan JH, Feng YX, Zhao YL, Yuan YL, Chai ZF (2012) J Mater Chem 22:17019–17026CrossRefGoogle Scholar
  3. 3.
    Anirudhan TS, Bringle CD, Rijith S (2010) J Environ Radioact 101:267–276CrossRefGoogle Scholar
  4. 4.
    Fernandes MM, Baeyens B, Dähn R, Scheinost AC, Bradbury MH (2012) Geochim Cosmochim Acta 93:262–277CrossRefGoogle Scholar
  5. 5.
    Wang XL, Yuan LY, Wang YF, Li ZJ, Lan JH, Liu YL, Feng YX, Zhao YL, Chai ZF, Shi WQ (2012) Sci China Ser B 55:1705–1711CrossRefGoogle Scholar
  6. 6.
    Nie BW, Zhang ZB, Cao XH, Liu YH, Liang P (2013) J Radioanal Nucl Chem 295:263–270CrossRefGoogle Scholar
  7. 7.
    Tian G, Geng JX, Jin YD, Wang CL, Li SQ, Chen Z, Wang H, Zhao YS, Li SJ (2011) J Hazard Mater 190:442–450CrossRefGoogle Scholar
  8. 8.
    Dent AJ, Ramsay JDF, Swanton SW (1992) J Colloid Interface Sci 150:45–60CrossRefGoogle Scholar
  9. 9.
    Michard P, Guibal E, Vincent T, LeCloirec P (1996) Microporous Mater 5:309–324CrossRefGoogle Scholar
  10. 10.
    Aytas S, Akyil S, Aslani MAA, Aytekin U (1999) J Radioanal Nucl Chem 240:973–976CrossRefGoogle Scholar
  11. 11.
    Gupta AR, Venkataramani B (1988) Bull Chem Soc Jpn 61:1357–1362CrossRefGoogle Scholar
  12. 12.
    Mercier L, Pinnavaia TJ (1997) Adv Mater 9:500–503CrossRefGoogle Scholar
  13. 13.
    Yoshitake H (2005) New J Chem 29:1107–1117CrossRefGoogle Scholar
  14. 14.
    Olkhovyk O, Antochshuk V, Jaroniec V (2004) Colloids Surf A 236:69–72CrossRefGoogle Scholar
  15. 15.
    Lam KF, Yeung KL, Mckay G (2006) Langmuir 22:9632–9641CrossRefGoogle Scholar
  16. 16.
    Yousefi SR, Ahmadi SJ, Shemirani F, Jamali MR, Salavati-Niasari M (2009) Talanta 80:212–217CrossRefGoogle Scholar
  17. 17.
    Long DL, Burkholder E, Cronin L (2007) Chem Soc Rev 36:105–121CrossRefGoogle Scholar
  18. 18.
    Sadakane M, Dickman MH, Pope MT (2001) Inorg Chem 40:2715–2719CrossRefGoogle Scholar
  19. 19.
    Venturelli A, Nilges MJ, Smirnov A, Belford RL, Francesconi LC (1999) Dalton Trans 3:301–310CrossRefGoogle Scholar
  20. 20.
    Keita B, Girard F, Nadjo L, Contant R, Canny J, Richet M (1999) J Electroanal Chem 478:76–82CrossRefGoogle Scholar
  21. 21.
    Nomiya K, Sakai Y, Matsunaga S (2011) Eur J Inorg Chem 2:179–196CrossRefGoogle Scholar
  22. 22.
    Dapurkar SE, Badamali SK, Selvam P (2001) Catal Today 68:63–68CrossRefGoogle Scholar
  23. 23.
    Haraguchi N, Okaue Y, Isobe T, Matsuda Y (1994) Inorg Chem 33:1015–1020CrossRefGoogle Scholar
  24. 24.
    Yang Y, Guo YH, Hu CW, Wang E (2003) Appl Catal A 252:305–314CrossRefGoogle Scholar
  25. 25.
    Akkaya R, Ulusoy U (2008) J Hazard Mater 151:380–388CrossRefGoogle Scholar
  26. 26.
    Gao L, Yang ZQ, Shi KL, Wang XF, Guo ZJ, Wu WS (2010) J Radioanal Nucl Chem 284:519–526CrossRefGoogle Scholar
  27. 27.
    Kumar D, Schumacher K, von Hohenesche CDF, Grun M, Unger KK (2001) Colloids Surf A 187:109–116CrossRefGoogle Scholar
  28. 28.
    Brunauer S, Deming LS, Deming WE, Teller E (1940) J Chem Soc 62:1723–1732CrossRefGoogle Scholar
  29. 29.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  30. 30.
    Ren XM, Wang SW, Yang ST, Li JX (2010) J Nanosci Nanotechnol 283:253–259Google Scholar
  31. 31.
    Anirudhan TS, Bringle CD, Rijith S (2010) J Environ Radioact 101:267–276CrossRefGoogle Scholar
  32. 32.
    Hu J, Xie Z, He B, Sheng GD, Chen CL, Li JX, Chen YX, Wang XK (2010) Sci China Ser B 53:1420–1428CrossRefGoogle Scholar
  33. 33.
    Sureshkumar MK, Das D, Mallia MB, Gupta PC (2010) J Hazard Mater 184:65–72CrossRefGoogle Scholar
  34. 34.
    Sheng G, Hu J, Jin H, Yang S, Ren X, Li J, Chen Y, Wang X (2010) Radiochim Acta 98:291–299CrossRefGoogle Scholar
  35. 35.
    Anirudhan TS, Suchithra PS, Rijith S (2008) Colloids Surf A 326:147–156CrossRefGoogle Scholar
  36. 36.
    Shao DD, Fan QH, Li JX, Niu ZW, Wu WS, Chen YX, Wang XK (2009) Microporous Mesoporous Mater 123:1–9CrossRefGoogle Scholar
  37. 37.
    Sheng GD, Shao DD, Fan QH, Xu D, Chen YX, Wang XK (2009) Radiochim Acta 97:621–630CrossRefGoogle Scholar
  38. 38.
    Fan QH, Tan XL, Li JX, Wang XK, Wu WS, Montavon G (2009) Environ Sci Technol 43:5776–5782CrossRefGoogle Scholar
  39. 39.
    Chen CL, Wang XK, Nagatsu M (2009) Environ Sci Technol 43:2362–2367CrossRefGoogle Scholar
  40. 40.
    Chang P, Yu S, Chen T, Ren A, Chen C, Wang X (2007) J Radioanal Nucl Chem 274:153–160CrossRefGoogle Scholar
  41. 41.
    Hu J, Xu D, Chen L, Wang XK (2009) J Radioanal Nucl Chem 79:701–708CrossRefGoogle Scholar
  42. 42.
    Yu S, Ren A, Cheng J, Song XP, Chen C, Wang X (2007) J Radioanal Nucl Chem 273:129–133CrossRefGoogle Scholar
  43. 43.
    Yang ST, Li JX, Lu Y, Chen YX, Wang XK (2009) Appl Radiat Isot 67:1600–1608CrossRefGoogle Scholar
  44. 44.
    Zhang H, Yu XJ, Chen L, Geng JQ (2010) J Radioanal Nucl Chem 286:249–258CrossRefGoogle Scholar
  45. 45.
    Sheng GD, Hu J, Wang XK (2008) Appl Radiat Isot 66:1313–1320CrossRefGoogle Scholar
  46. 46.
    Shao DD, Xu D, Wang SW, Fang QH, Wu WS, Dong YH, Wang XK (2009) Sci China Ser B 52:362–371CrossRefGoogle Scholar
  47. 47.
    Chen CL, Wang XK (2007) Appl Geochem 22:436–445CrossRefGoogle Scholar
  48. 48.
    Zhao DL, Yang X, Zhang H, Chen CL, Wang XK (2010) Chem Eng J 164:49–55CrossRefGoogle Scholar
  49. 49.
    Hu J, Chen CL, Sheng GD, Ei JX, Chen YX, Wang XK (2010) Radiochim Acta 98:421–429Google Scholar
  50. 50.
    Shao DD, Jiang ZQ, Wang XK, Li JX, Meng YD (2009) J Phys Chem B 113:860–864CrossRefGoogle Scholar
  51. 51.
    Tan XL, Fan QH, Wang XK, Grambow B (2009) Environ Sci Technol 43:3115–3121CrossRefGoogle Scholar
  52. 52.
    Chen CL, Xu D, Tan XL, Wang XK (2007) J Radioanal Nucl Chem 273:227–233CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2014

Authors and Affiliations

  • Lijuan Song
    • 1
  • Yulong Wang
    • 1
  • Lu Zhu
    • 1
  • Bolong Guo
    • 1
  • Suwen Chen
    • 1
  • Wangsuo Wu
    • 1
  1. 1.Laboratory of Radiochemistry and Nuclear Environment, School of Nuclear Science and TechnologyLanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations