Skip to main content
Log in

An improved PUREX process in technetium separation by stepwise reduction

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

An improved PUREX process in Tc separation is introduced in this paper. Experiments including we did and done by other investigators are cited in this paper to testify the feasibility of the process. The scheme of this process is as follows: First, to extract U, Pu and most Tc, Np into the organic phase, so the concentration of Tc in the high level liquid waste (HLLW) may be very low, which can alleviate the burden of Tc treatment in HLLW vitrification. Second, in the Pu and Np separation stage to reduce or complex Pu and Np using acetohydroxamic acid, this step separates Pu and Np from the organic phase. Next, to separate Tc from U, it can be realized easily by reducing Tc to lower valance using reductant such as hydrazine or quadrivalence U. By this technology, we may resolve the problems caused by Tc remained in the HLLW such as a long time surveillance of HLLW condensate or the risk of Tc transferring into the biosphere, and meanwhile the over-consumption of reductant in the U/Pu splitting stage can be avoided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ebert K, Schmieder H (1989) In: Ebert K and Ammon R (ed) Safety of the nuclear fuel cycle, 3rd edn, Paris France

  2. Kolarik, Z, Petrich G, Bleyl HJ (1990) ISEC’90 Conference, Kyoto, Japan, July 1990. Elsevier, 1992, part A 561–566

  3. Hajimu Y, Omori E, Miura N, et al. (1990) ISEC’90 Conference, Kyoto, Japan, July 1990. Elsevier, 1992, part A: 657–662

  4. Iwabuchi H, Sasaki K, Koyama K, et al. (1990) ISEC’90 Conference, Kyoto, Japan, July 1990. Elsevier, 1992, part A: 705–710

  5. Bernard C, Miquel P, Vivla M (1991) RECOD’91, April 14–18, Sandai, Japan

  6. Baron P, Boullis B, Germain M (1993) GOLBAL’93, Sep 12–17, vol 1. Seattle, Washington 63–70

  7. Asada K, Bernard C, Bertault PH (1997) GOLBAL’97, Tokyo Japan, p 1460–1465

  8. Ozawa M, Ishida M, Sano Y (2003) Radiochem 45(3):225–232

    Article  CAS  Google Scholar 

  9. Matsumoto S, Uchiyama G, Ozawa M (2003) Radiochem 45(3):219–224

    Article  CAS  Google Scholar 

  10. Mashkin AN, Korchenkin KK, Svetlakova NA (2002) Radiochem 44(1):35–41

    Article  CAS  Google Scholar 

  11. Burrows C, Phillips C (2006) WM’06 Conference, Feb 26–Mar 2, Tucson, USA

  12. Phillips C (1999) WM’99conference, Tucson, USA, p 1041–1045

  13. Denniss IS, Phillips C (1990) ISEC’90, Kyoto, Japan, 16–21 July, Paper 04-02

  14. Pruett DJ (1984) ORNL-8668

  15. Ouyang YG, Li RX, Jiao HY (2003) J Nucl Radiochem 25(2):115–119

    CAS  Google Scholar 

  16. Tachimori S (1994) J Nucl Sci Tech 31(5):456–462

    Article  CAS  Google Scholar 

  17. Lazarev LN, Zilberman BY, Romanovsk VN (1994) La-sub-95-81

  18. Tkac P, Matteson B, Bruso J (2008) J Radioanal Nucl Chem 277(1):31–36

    Article  CAS  Google Scholar 

  19. Matteson BS, Precek M, (2010) Mater Sci Eng doi:10.1088/1757-899X/9/1/012073

  20. Taylor RJ, May I, Wallwork AL et al (1998) J Alloy Comp 273:534–537

    Article  Google Scholar 

  21. Colston BJ, Choppin GR, Taylor RJ (2000) Radiochim Acta 88:329

    Article  CAS  Google Scholar 

  22. Chung DY, Lee EH (2005) Bull Korean Chem Soc 26(11):1692–1694

    Article  CAS  Google Scholar 

  23. Butler RJ, Sinkov S, Renshaw JC (2004) Atalante2004, October 24–26, Avignon, France

  24. Matteson, B.S.: Paper of Doctor of Philosophy in Chemistry, Oregon State University (2010)

  25. Yan TH, Zuo C, Zheng WF (2012) Atom Energy Sci Tech 46(9):1034–1040

    CAS  Google Scholar 

  26. Schroeder NC, Moses A, Marrero T (2000) LA-UR-01-6607

  27. Tkac P, Paulenova A, Vandegrift GF (2009) J Radioanal Nucl Chem 280(2):339–342

    Article  CAS  Google Scholar 

  28. Tkac P, Paulenova A, Vandegrift GF, Krebs JF (2010) J Chem Eng 55:3445–3450

    CAS  Google Scholar 

  29. Carrott MJ, Fox OD, Maher CJ, Mason C (2007) Solv Extr Ion Exch 25:723–745

    Article  CAS  Google Scholar 

  30. Tkac P, Paulenova A (2008) Sep Sci Technol 43:2670–2683

    Article  CAS  Google Scholar 

  31. Govindan P, Sukumar S (2008) Desalination 232:166–171

    Article  CAS  Google Scholar 

  32. Sarsfield MJ, Sims HE, Taylor RJ (2011) Solv Extr Ion Exch 29:49–71

    Article  CAS  Google Scholar 

  33. Vandegrift GF, Scott B (2004) WM’04 Conference, February 29–March 4, Tucson

  34. Gelis AV, Vandegrift GF, Bakel A, Bowers DL (2009) Radiochim Acta 97(4–5):231–232

    CAS  Google Scholar 

  35. Vandegrift GF, Chamberlain DB, Conner C (1993) WM’93 Conference, 2: pp 1045–1050

  36. Vandegrift GF, Regalbuto MC (1995) ICEM’95, 1: pp 457–467

  37. Candido P, Vandegrift GF, Regalbuto MC, Bakel A (2004) WM’04 Conference, Tucson, AZ Feb–Mar 2004

  38. Thompson MC, Norato MA, Kessinge GF (2002) WSRC-TR-2002-00444

  39. Wilson PD, Garraway J (1993) J Chem Soc doi:10.1039/DT9930002601

  40. Liu F, Wang H, Jia YF, Wei Y (2012) ANUP2012 Conference, Beijing, China, paper 31

  41. Garraway J, Wilson PD (1984) J Less Common Met 97:191–203

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Sun, Yr., Wang, H. et al. An improved PUREX process in technetium separation by stepwise reduction. J Radioanal Nucl Chem 299, 1329–1333 (2014). https://doi.org/10.1007/s10967-013-2888-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2888-x

Keywords

Navigation