Journal of Radioanalytical and Nuclear Chemistry

, Volume 299, Issue 3, pp 1329–1333 | Cite as

An improved PUREX process in technetium separation by stepwise reduction

  • Fang Liu
  • Ya-ru Sun
  • Hui Wang
  • Wei-fang Zheng


An improved PUREX process in Tc separation is introduced in this paper. Experiments including we did and done by other investigators are cited in this paper to testify the feasibility of the process. The scheme of this process is as follows: First, to extract U, Pu and most Tc, Np into the organic phase, so the concentration of Tc in the high level liquid waste (HLLW) may be very low, which can alleviate the burden of Tc treatment in HLLW vitrification. Second, in the Pu and Np separation stage to reduce or complex Pu and Np using acetohydroxamic acid, this step separates Pu and Np from the organic phase. Next, to separate Tc from U, it can be realized easily by reducing Tc to lower valance using reductant such as hydrazine or quadrivalence U. By this technology, we may resolve the problems caused by Tc remained in the HLLW such as a long time surveillance of HLLW condensate or the risk of Tc transferring into the biosphere, and meanwhile the over-consumption of reductant in the U/Pu splitting stage can be avoided.


PUREX process Technetium Plutonium Neptunium Acetohydroxamic acid 


  1. 1.
    Ebert K, Schmieder H (1989) In: Ebert K and Ammon R (ed) Safety of the nuclear fuel cycle, 3rd edn, Paris FranceGoogle Scholar
  2. 2.
    Kolarik, Z, Petrich G, Bleyl HJ (1990) ISEC’90 Conference, Kyoto, Japan, July 1990. Elsevier, 1992, part A 561–566Google Scholar
  3. 3.
    Hajimu Y, Omori E, Miura N, et al. (1990) ISEC’90 Conference, Kyoto, Japan, July 1990. Elsevier, 1992, part A: 657–662Google Scholar
  4. 4.
    Iwabuchi H, Sasaki K, Koyama K, et al. (1990) ISEC’90 Conference, Kyoto, Japan, July 1990. Elsevier, 1992, part A: 705–710Google Scholar
  5. 5.
    Bernard C, Miquel P, Vivla M (1991) RECOD’91, April 14–18, Sandai, JapanGoogle Scholar
  6. 6.
    Baron P, Boullis B, Germain M (1993) GOLBAL’93, Sep 12–17, vol 1. Seattle, Washington 63–70Google Scholar
  7. 7.
    Asada K, Bernard C, Bertault PH (1997) GOLBAL’97, Tokyo Japan, p 1460–1465Google Scholar
  8. 8.
    Ozawa M, Ishida M, Sano Y (2003) Radiochem 45(3):225–232CrossRefGoogle Scholar
  9. 9.
    Matsumoto S, Uchiyama G, Ozawa M (2003) Radiochem 45(3):219–224CrossRefGoogle Scholar
  10. 10.
    Mashkin AN, Korchenkin KK, Svetlakova NA (2002) Radiochem 44(1):35–41CrossRefGoogle Scholar
  11. 11.
    Burrows C, Phillips C (2006) WM’06 Conference, Feb 26–Mar 2, Tucson, USAGoogle Scholar
  12. 12.
    Phillips C (1999) WM’99conference, Tucson, USA, p 1041–1045Google Scholar
  13. 13.
    Denniss IS, Phillips C (1990) ISEC’90, Kyoto, Japan, 16–21 July, Paper 04-02Google Scholar
  14. 14.
    Pruett DJ (1984) ORNL-8668Google Scholar
  15. 15.
    Ouyang YG, Li RX, Jiao HY (2003) J Nucl Radiochem 25(2):115–119Google Scholar
  16. 16.
    Tachimori S (1994) J Nucl Sci Tech 31(5):456–462CrossRefGoogle Scholar
  17. 17.
    Lazarev LN, Zilberman BY, Romanovsk VN (1994) La-sub-95-81Google Scholar
  18. 18.
    Tkac P, Matteson B, Bruso J (2008) J Radioanal Nucl Chem 277(1):31–36CrossRefGoogle Scholar
  19. 19.
    Matteson BS, Precek M, (2010) Mater Sci Eng doi: 10.1088/1757-899X/9/1/012073
  20. 20.
    Taylor RJ, May I, Wallwork AL et al (1998) J Alloy Comp 273:534–537CrossRefGoogle Scholar
  21. 21.
    Colston BJ, Choppin GR, Taylor RJ (2000) Radiochim Acta 88:329CrossRefGoogle Scholar
  22. 22.
    Chung DY, Lee EH (2005) Bull Korean Chem Soc 26(11):1692–1694CrossRefGoogle Scholar
  23. 23.
    Butler RJ, Sinkov S, Renshaw JC (2004) Atalante2004, October 24–26, Avignon, FranceGoogle Scholar
  24. 24.
    Matteson, B.S.: Paper of Doctor of Philosophy in Chemistry, Oregon State University (2010)Google Scholar
  25. 25.
    Yan TH, Zuo C, Zheng WF (2012) Atom Energy Sci Tech 46(9):1034–1040Google Scholar
  26. 26.
    Schroeder NC, Moses A, Marrero T (2000) LA-UR-01-6607Google Scholar
  27. 27.
    Tkac P, Paulenova A, Vandegrift GF (2009) J Radioanal Nucl Chem 280(2):339–342CrossRefGoogle Scholar
  28. 28.
    Tkac P, Paulenova A, Vandegrift GF, Krebs JF (2010) J Chem Eng 55:3445–3450Google Scholar
  29. 29.
    Carrott MJ, Fox OD, Maher CJ, Mason C (2007) Solv Extr Ion Exch 25:723–745CrossRefGoogle Scholar
  30. 30.
    Tkac P, Paulenova A (2008) Sep Sci Technol 43:2670–2683CrossRefGoogle Scholar
  31. 31.
    Govindan P, Sukumar S (2008) Desalination 232:166–171CrossRefGoogle Scholar
  32. 32.
    Sarsfield MJ, Sims HE, Taylor RJ (2011) Solv Extr Ion Exch 29:49–71CrossRefGoogle Scholar
  33. 33.
    Vandegrift GF, Scott B (2004) WM’04 Conference, February 29–March 4, TucsonGoogle Scholar
  34. 34.
    Gelis AV, Vandegrift GF, Bakel A, Bowers DL (2009) Radiochim Acta 97(4–5):231–232Google Scholar
  35. 35.
    Vandegrift GF, Chamberlain DB, Conner C (1993) WM’93 Conference, 2: pp 1045–1050Google Scholar
  36. 36.
    Vandegrift GF, Regalbuto MC (1995) ICEM’95, 1: pp 457–467Google Scholar
  37. 37.
    Candido P, Vandegrift GF, Regalbuto MC, Bakel A (2004) WM’04 Conference, Tucson, AZ Feb–Mar 2004Google Scholar
  38. 38.
    Thompson MC, Norato MA, Kessinge GF (2002) WSRC-TR-2002-00444Google Scholar
  39. 39.
    Wilson PD, Garraway J (1993) J Chem Soc doi: 10.1039/DT9930002601
  40. 40.
    Liu F, Wang H, Jia YF, Wei Y (2012) ANUP2012 Conference, Beijing, China, paper 31Google Scholar
  41. 41.
    Garraway J, Wilson PD (1984) J Less Common Met 97:191–203CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  1. 1.China Institute of Atomic EnergyBeijingChina

Personalised recommendations