Journal of Radioanalytical and Nuclear Chemistry

, Volume 299, Issue 1, pp 363–372 | Cite as

The development of radioactive glass surrogates for fallout debris

  • Kevin P. Carney
  • Martha R. Finck
  • Christopher A. McGrath
  • Leigh R. Martin
  • Russel R. Lewis


The production of glass that emulates fallout is desired by the nuclear forensics community for training and measurement exercises. The composition of nuclear fallout is complex, with widely varying isotopic compositions (Fahey et al., Proc Natl Acad Sci USA 107(47):20207–20212, 2010; Bellucci et al., Anal Chem 85:7588–7593, 2013; Wallace et al., J Radioanal Nucl Chem, 2013; Belloni et al., J Environ Radioact 102:852–862, 2011; Freiling, Science 139:1058–1059, 1963; Science 133:1991–1999, 1961; Bunney and Sam Government Report: Naval Ordinance Laboratory, White Oak, 1971). As the gaseous cloud traverses from hotter to cooler regions of the atmosphere, the processes of condensation and nucleation entrain environmental materials, vaporized nuclear materials and fission products. The elemental and isotopic composition of the fission products is altered due to chemical fractionation (i.e. the fission product composition that would be expected from fission of the original nuclear material is altered by differences in condensation rates of the elements); the fallout may be enriched or depleted in volatile or refractory fission products. This paper describes preliminary work to synthesize, irradiate and fractionate the fission product content of irradiated particulate glass using a thermal distillation 2 h after irradiation. The glass was synthesized using a solution-based polymerization of tetraethyl orthosilicate. (Izrael, Radioactive fallout after nuclear explosions and accidents, 2002) Uranium was incorporated into the glass particulate at trace concentrations during polymerization. The particulate was subjected to a short thermal neutron irradiation then heated to 1,273 K approximately 2 h after the end of irradiation. Fission products of 133, 134, 135I, 132, 134Te, 135Xe, 138Cs and 91, 92Sr were observed to be distilled from the particulate. The results of these preliminary studies are discussed.


Fission products Glass Fractionation Nuclear forensics Neutron activation Sol–gel glass 



The authors acknowledge the US Department of Energy’s Office of National Technical Nuclear Forensics for funding this work. We also acknowledge the contributions of Mr. Fred Gholsen and Mr. Andrew Smolinksi and the INL’s neutron radiography Training Research Isotopes General Atomic (TRIGA) reactor staff for providing sample irradiations. Also recognized are: Mr. Jeffrey Berg for dissolution of the glass samples, and Mr. Marcos Jimenez for performing the isotope dilution mass spectrometry measurements.


  1. 1.
    Fahey AJ, Zeissler CJ, Newbury DE, Davis J, Lindstrom RM (2010) Accessed 9 Nov 2010
  2. 2.
    Bellucci JJ, Simonetti A, Wallace C, Koeman EC, Burns PC (2013) Lead isotopic composition of trinitite melt glass: evidence for the presence of Canadian Industrial Lead in the first atomic weapon test. Anal Chem 85:7588–7593CrossRefGoogle Scholar
  3. 3.
    Wallace C, Bellucci JJ, Simonetti A, Hainley T, Koeman EC, Burns PC (2013) A multi-method approach for determination of radionuclide distribution in trinitite. J Radioanal Nucl Chem. doi:  10.1007/s10967-013-2497-8
  4. 4.
    Belloni F, Himbert J, Marzocchi O, Romanello V (2011) Investigating incorporation and distribution of radionuclides in trinitite. J Environ Radioact 102:852–862CrossRefGoogle Scholar
  5. 5.
    Freiling EC (1963) Theoretical basis for logarithmic correleations of fractionated radionuclide compositions. Science 139:1058–1059CrossRefGoogle Scholar
  6. 6.
    Freiling EC (1961) Radionuclide fractionation in bomb debris. Science 133:1991–1999CrossRefGoogle Scholar
  7. 7.
    Bunney LR, Sam D US (1971) Government Report: Naval Ordinance Laboratory, White Oak. Maryland, Noltr 71–103Google Scholar
  8. 8.
    Izrael YA (2002) Radioactive fallout after nuclear explosions and accidents. Elsevier, Saint LouisGoogle Scholar
  9. 9.
    Gibson TA (1968) Observed fractionation in ground level fallout from three nuclear cratering detonations. University of California, Lawrence Radiation Laboratory report: TID-4500 UC-35, San DiegoGoogle Scholar
  10. 10.
    Carney K, Finck M, Brush B, Jansen D, Dry D, Brooks G, Chamberlain D (2013) J Radioanal Nucl Chem 296:769–773Google Scholar
  11. 11.
    Vasconcelos WL (1998) Connectivity in sol–gel silica glasses. Química Nova 21(4):514–516CrossRefGoogle Scholar
  12. 12.
    Santos AMM, Vasconcelos WL (2000) Properties of porous glasses prepared via sol–gel processes. J Non-Cryst Solids 273:145–149CrossRefGoogle Scholar
  13. 13.
    Gauld I, Hermann OW, Westfall RM (2009) Origen-S: scale system module to calculate fuel depletion, actinide transmutation, fission product buildup and decay, and associated radiation source terms. ORNL/TM-2005/39 Version 6 vol. II, Sect. F7Google Scholar
  14. 14.
    England TR, Rider BF (1993) Los Alamos National Laboratory, LA-UR-94-3106; ENDF-349Google Scholar
  15. 15.
    Crocker GR (1967) US Navel Radiological Defense Laboratory report, USNRDL-TR-67-IIIGoogle Scholar
  16. 16.
    Rudstam G (1994) International Nuclear Data Committee report INDC(SWD)-024 International Atomic Energy Agency Nuclear Data Section, Wagramer strasse 5, A-1400 Vienna, AustriaGoogle Scholar
  17. 17.
    Nichols AL, Aldama DL, Verpelli M (2008) International Atomic Energy Agency International Nuclear Data Committee report INDC(NDS)-0534 Nuclear Data Section International Atomic Energy Agency Vienna, AustriaGoogle Scholar
  18. 18.
    Jacob KT, Waseda Y (1988) The vapour pressures of barium and strontium. J Less Common Met 139:249–259CrossRefGoogle Scholar
  19. 19.
    Brooks LS (1952) The vapor pressures of tellurium and selenium. J Am Chem Soc 74:227–229CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Kevin P. Carney
    • 1
  • Martha R. Finck
    • 1
  • Christopher A. McGrath
    • 2
  • Leigh R. Martin
    • 1
  • Russel R. Lewis
    • 1
  1. 1.Idaho National LaboratoryIdaho FallsUSA
  2. 2.Idaho State UniversityPocatelloUSA

Personalised recommendations