Skip to main content
Log in

A method for bulk hydrogen analysis based on transmission and back scattering of fast neutrons

Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A method was proposed for bulk hydrogen analysis. It is based on simultaneous detection of transmitted fast neutrons and back scattered thermal neutrons from the investigated samples by 3He detectors. The fast neutron beams were obtained from 252Cf and Pu–Be neutron sources. The experimental set-up as well as samples preparation were described. Incident thermal neutrons beams obtained from either 252Cf or Pu–Be sources, were used to investigate the samples by neutron backscattering. The results obtained from transmission and backscattering of fast neutrons were compared and discussed. The advantage and capabilities of the proposed method were presented. The results obtained using fast neutron beams are more sensitive than those obtained using thermal neutron beams. Validation procedures were proposed to credit the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Hussein EMA, Waller EJ (2000) Landmine detection: the problem and the challenge. Appl Radiat Isot 53:557–563

    Article  CAS  Google Scholar 

  2. Csikai J, Dóczi R, Király B (2004) Investigations on landmine detection by neutron-based techniques. Appl Radiat Isot 61:11–20

    Article  CAS  Google Scholar 

  3. Brooks FD, Drosg M, Smit FD, Wikner C (2012) Detection of explosive remnants of war by neutron thermalisation. Appl Radiat Isot 70:119–127

    Article  CAS  Google Scholar 

  4. Fd Brooks, Drosg M (2005) The HYDAD-D antipersonnel landmine detector. Appl Radiat Isot 63:565–574

    Article  Google Scholar 

  5. Takahashi Y, Misawa T, Pyeon CH, Shiroya S, Yoshikawa K (2011) Landmine detection method combined with backscattering neutrons and capture γ-rays from hydrogen. Appl Radiat Isot 69:1027–1032

    Article  CAS  Google Scholar 

  6. Elsheikh N, Viesti G, ElAgib I, Habbani F (2012) On the use of a (252Cf–3He) assembly for landmine detection by the neutron back-scattering method. Appl Radiat Isot 70:643–649

    Article  CAS  Google Scholar 

  7. Datema C, Bom VR, van Eijk CW, Ali MA (2001) Land mine detection with the neutron back scattering method. IEEE Trans Nucl Sci 48:1087–1091

    Article  CAS  Google Scholar 

  8. Boom V, Mostafa A, Osman AM, Abd El-Monem AM, Kansouth WA, Megahid RM, van Eijk WE (2006) A feasibility test of land mine detection in a dessert environment using neutron back scattering imaging. IEEE Trans Nucl Sci 53:1–6

    Article  Google Scholar 

  9. Buell JR, Byskal DP, Desrosiers MR, Hussein EMA, Ingham PJ, Swartz RS (2005) A neutron scatterometer for void-fraction measurement in heated rod-bundle channels under CANDU LOCA conditions. Int J Multiph Flow 31:452–472

    Article  CAS  Google Scholar 

  10. Jonah SA, El-Megrab, Veradi M, Csikai J (1997) An improved neutron reflection set-up for the determination of H and (O + C)/H in oil samples. J Radioanal Nucl Chem 218(2):193–195

    Article  CAS  Google Scholar 

  11. Jonah SA, Zakari II, Elegba SB (1999) Determination of the hydrogen content of oil samples from Nigeria using an Am-Be neutron. Appl Radiat Isot 50:981–983

    Article  Google Scholar 

  12. Jonah SA, Umar IM (2004) Estimating adulteration of petroleum-based fuels using neutron reflectometry technique. Radiat Phys Chem 71:889–890

    Article  CAS  Google Scholar 

  13. Akaho EHK, Jonah SA, Dagadu CPK, Maakuu BT, Anim-Sampong S, Kyere AWK (2001) Thermal neutron reflection method for measurement of total hydrogen contents in Ghanaian petroleum products. Appl Radiat Isot 55:617–622

    Article  CAS  Google Scholar 

  14. Akaho EHK, Jonah SA, Nyarko BJB, Osae S, Maakuu BT, Serfor-Armah Y, Kyere AWK (2002) Simultaneous use of neutron transmission and reflection techniques for the classification of crude oil samples. Appl Radiat Isot 57:831–836

    Article  CAS  Google Scholar 

  15. Hasan N, Zain R, Abdul Rahman M, Mustafa I (2009) The use of a neutron back scattering for in situ water measurement in paper –recycling industry. Appl Radiat Isot 67:1239–1243

    Article  CAS  Google Scholar 

  16. Mercer J, Hussein E, Waller E (2007) A non-intrusive neutron device for in situ detection of petroleum contamination in soil. Nucl InstrumMethods Phys Res B 263:217–222

    Article  CAS  Google Scholar 

  17. Buczkó M, Dezső Z, Csikai J (1975) Determination of the bitumen content in asphalt concrete using a neutron reflection method. J radioanl Nucl Chem 25:183–197

    Google Scholar 

  18. Idiri Z, Dekali K, Bedek S, Omari L, Amokrane A, Belamri M, Azbouche A (2005) An optimized setup for determining the bitumen content in asphalt concrete by the neutron reflection method. J radioanl Nucl Chem 265(1):137–139

    Article  CAS  Google Scholar 

  19. Boom VR, Cosentino A, Seracini M, Rosa R (2010) Neutron back scattering for the search of the Battle of Anghiari. Appl Radiat Isot 68:66–70

    Article  Google Scholar 

  20. Csikai J, Dóczi R (2009) Optimization of source-sample-detector geometries for bulk hydrogen analysis using epithermal neutrons. Appl Radiat Isot 67:70–72

    Article  CAS  Google Scholar 

  21. Dóczi R, Csikai J, Sanami T, Fayez-Hassan M (2005) Bulk hydrogen analysis using epithermal neutrons. J Radioanal Nucl Chem 266(1):11–17

    Article  Google Scholar 

  22. Dóczi R, Csikai J (2008) An improved method for bulk hydrogen analysis using epithermal neutrons. Appl Radiat Isot 66:1870–1872

    Article  Google Scholar 

  23. Papp A, Csikai J (2010) Studies on the properties of an epithermal-neutron hydrogen analyzer. Appl Radiat Isot 68:1677–1681

    Article  CAS  Google Scholar 

  24. Grosse M, vandenBerg M, Goule C, Lehmann E, Schillinger B (2011) In-situ neutron radiography investigations of hydrogen diffusion and absorption in zirconium alloys. Nucl Instrum Methods Phys Res A651:253–257

    Google Scholar 

  25. El-Abd A (2004) Analysis of water migration in porous building material using neutron and gamma radiography. PhD thesis (unpublished)

  26. El Abd A, Milczarek JJ (2004) Neutron radiography study of water absorption in porous building materials: anomalous diffusing analysis. J Phys D Appl Phys 37:2305–2313

    Article  Google Scholar 

  27. El Abd A, Czachor A, Milczarek J (2009) Neutron radiography determination of water diffusivity in fired clay brick. Appl Radiat Isot 67:556–559

    Article  Google Scholar 

  28. Poulikakos LD, Sedighi Gilani M, Derome D, Jerjen I, Vontobel P (2013) Time resolved analysis of water drainage in porous asphalt concrete using neutron radiography. Appl Radiat Isot 77:5–13

    Google Scholar 

  29. De Beer FC, Strydom WJ, Griese EJ (2004) The drying process of concrete: a neutron radiography study. Appl Radiat Isot 61:617–623

    Article  Google Scholar 

  30. Domanus J. C. (ed.) (1992) Practical neutron radiography, Kluwer academic publisher

  31. Zhang P, Wittmann FH, Zhao T, Lehmann EH, Vontobel P (2011) Neutron radiography, a powerful method to determine time-dependent moisture distributions in concrete. Nucl Eng Des 241:4758–4766

    Article  CAS  Google Scholar 

  32. Joos A, Schmitz G, Mühlbauer MJ, Schillinger B (2010) Investigation of moisture phase change in porous media using neutron radiography and gravimetric analysis. Int J Heat Mass Transf 53:5283–5288

    Article  CAS  Google Scholar 

  33. Gokhale PP, Hussein EMA (1997) A Cf- 252 neutron transmission technique for bulk detection of explosives. Appl Radiat Isot 48:973–979

    Article  CAS  Google Scholar 

  34. Fantidis JG, Nicolaou GE (2011) A transportable fast neutron and dual gamma-ray system for the detection of illicit materials. Nucl Instrum Methods Phys Res A 648:275–284

    Article  CAS  Google Scholar 

  35. Cywicka-Jakiel T, Łoskiewicz J, Tracz G (2003) The optimization of the fast neutron and gamma-ray transmission set-up for moisture measurement of coke. Appl Radiat Isot 58:137–142

    Article  CAS  Google Scholar 

  36. Bartle CM (1999) Comparison of the response of raw wool to simultaneous neutron and gray (neugat) transmission and simultaneous dual energy γ-ray (gamgat) transmission. Appl Radiat Isot 50:859–866

    Article  CAS  Google Scholar 

  37. Nordlund A, Lindén P, Pór G, Solymar M, Dahl B (2001) Measurements of water content in geological samples using transmission of fast neutrons. Nucl Instrum Methods Phys Res A 462:457–462

    Article  CAS  Google Scholar 

  38. Naqvi AA (2003) Moisture measurements of wood and sugar samples using neutron transmission technique. Nucl Instrum Methods Phys Res A 497:569–576

    Article  CAS  Google Scholar 

  39. Granada JR, Santisteban JR, Mayer RE (1995) Non-destructive determination of very low hydrogen content in metals with the use of neutron techniques. Physica B213:1005–1007

    Google Scholar 

  40. Standard Test Method for Measuring Moisture Vapour Emission Rate of Concrete Subfloor Using Anhydrous Calcium Chloride, ASTM F1869–04

  41. Desdin L, Ceballos C (2000) Neutron reflection method for the fast estimation of neutron removal cross section in hydrogenous materials. J Radioanal Nucl Chem 243(3):835–837

    Article  CAS  Google Scholar 

  42. Desdin L, García LM (2000) Neutron reflection method for the fast estimation of neutron removal cross section in complex materials. J Radioanal Nucl Chem 246(2):411–412

    Article  CAS  Google Scholar 

  43. El Abd A, Abdel-Monem AM, Kansouh WA (2013) Experimental determination of moisture distributions in fired clay brick using a Cf -252 source: a neutron transmission study. Appl Radiat Isot 74:78–85

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. El Abd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Abd, A., Abdel-Monem, A.M. & Osman, A.M. A method for bulk hydrogen analysis based on transmission and back scattering of fast neutrons. J Radioanal Nucl Chem 298, 1293–1301 (2013). https://doi.org/10.1007/s10967-013-2666-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2666-9

Keywords

Navigation