Journal of Radioanalytical and Nuclear Chemistry

, Volume 298, Issue 2, pp 1293–1301 | Cite as

A method for bulk hydrogen analysis based on transmission and back scattering of fast neutrons



A method was proposed for bulk hydrogen analysis. It is based on simultaneous detection of transmitted fast neutrons and back scattered thermal neutrons from the investigated samples by 3He detectors. The fast neutron beams were obtained from 252Cf and Pu–Be neutron sources. The experimental set-up as well as samples preparation were described. Incident thermal neutrons beams obtained from either 252Cf or Pu–Be sources, were used to investigate the samples by neutron backscattering. The results obtained from transmission and backscattering of fast neutrons were compared and discussed. The advantage and capabilities of the proposed method were presented. The results obtained using fast neutron beams are more sensitive than those obtained using thermal neutron beams. Validation procedures were proposed to credit the results.


Neutron source Transmission Scattering Reflection parameter Mortar 


  1. 1.
    Hussein EMA, Waller EJ (2000) Landmine detection: the problem and the challenge. Appl Radiat Isot 53:557–563CrossRefGoogle Scholar
  2. 2.
    Csikai J, Dóczi R, Király B (2004) Investigations on landmine detection by neutron-based techniques. Appl Radiat Isot 61:11–20CrossRefGoogle Scholar
  3. 3.
    Brooks FD, Drosg M, Smit FD, Wikner C (2012) Detection of explosive remnants of war by neutron thermalisation. Appl Radiat Isot 70:119–127CrossRefGoogle Scholar
  4. 4.
    Fd Brooks, Drosg M (2005) The HYDAD-D antipersonnel landmine detector. Appl Radiat Isot 63:565–574CrossRefGoogle Scholar
  5. 5.
    Takahashi Y, Misawa T, Pyeon CH, Shiroya S, Yoshikawa K (2011) Landmine detection method combined with backscattering neutrons and capture γ-rays from hydrogen. Appl Radiat Isot 69:1027–1032CrossRefGoogle Scholar
  6. 6.
    Elsheikh N, Viesti G, ElAgib I, Habbani F (2012) On the use of a (252Cf–3He) assembly for landmine detection by the neutron back-scattering method. Appl Radiat Isot 70:643–649CrossRefGoogle Scholar
  7. 7.
    Datema C, Bom VR, van Eijk CW, Ali MA (2001) Land mine detection with the neutron back scattering method. IEEE Trans Nucl Sci 48:1087–1091CrossRefGoogle Scholar
  8. 8.
    Boom V, Mostafa A, Osman AM, Abd El-Monem AM, Kansouth WA, Megahid RM, van Eijk WE (2006) A feasibility test of land mine detection in a dessert environment using neutron back scattering imaging. IEEE Trans Nucl Sci 53:1–6CrossRefGoogle Scholar
  9. 9.
    Buell JR, Byskal DP, Desrosiers MR, Hussein EMA, Ingham PJ, Swartz RS (2005) A neutron scatterometer for void-fraction measurement in heated rod-bundle channels under CANDU LOCA conditions. Int J Multiph Flow 31:452–472CrossRefGoogle Scholar
  10. 10.
    Jonah SA, El-Megrab, Veradi M, Csikai J (1997) An improved neutron reflection set-up for the determination of H and (O + C)/H in oil samples. J Radioanal Nucl Chem 218(2):193–195CrossRefGoogle Scholar
  11. 11.
    Jonah SA, Zakari II, Elegba SB (1999) Determination of the hydrogen content of oil samples from Nigeria using an Am-Be neutron. Appl Radiat Isot 50:981–983CrossRefGoogle Scholar
  12. 12.
    Jonah SA, Umar IM (2004) Estimating adulteration of petroleum-based fuels using neutron reflectometry technique. Radiat Phys Chem 71:889–890CrossRefGoogle Scholar
  13. 13.
    Akaho EHK, Jonah SA, Dagadu CPK, Maakuu BT, Anim-Sampong S, Kyere AWK (2001) Thermal neutron reflection method for measurement of total hydrogen contents in Ghanaian petroleum products. Appl Radiat Isot 55:617–622CrossRefGoogle Scholar
  14. 14.
    Akaho EHK, Jonah SA, Nyarko BJB, Osae S, Maakuu BT, Serfor-Armah Y, Kyere AWK (2002) Simultaneous use of neutron transmission and reflection techniques for the classification of crude oil samples. Appl Radiat Isot 57:831–836CrossRefGoogle Scholar
  15. 15.
    Hasan N, Zain R, Abdul Rahman M, Mustafa I (2009) The use of a neutron back scattering for in situ water measurement in paper –recycling industry. Appl Radiat Isot 67:1239–1243CrossRefGoogle Scholar
  16. 16.
    Mercer J, Hussein E, Waller E (2007) A non-intrusive neutron device for in situ detection of petroleum contamination in soil. Nucl InstrumMethods Phys Res B 263:217–222CrossRefGoogle Scholar
  17. 17.
    Buczkó M, Dezső Z, Csikai J (1975) Determination of the bitumen content in asphalt concrete using a neutron reflection method. J radioanl Nucl Chem 25:183–197Google Scholar
  18. 18.
    Idiri Z, Dekali K, Bedek S, Omari L, Amokrane A, Belamri M, Azbouche A (2005) An optimized setup for determining the bitumen content in asphalt concrete by the neutron reflection method. J radioanl Nucl Chem 265(1):137–139CrossRefGoogle Scholar
  19. 19.
    Boom VR, Cosentino A, Seracini M, Rosa R (2010) Neutron back scattering for the search of the Battle of Anghiari. Appl Radiat Isot 68:66–70CrossRefGoogle Scholar
  20. 20.
    Csikai J, Dóczi R (2009) Optimization of source-sample-detector geometries for bulk hydrogen analysis using epithermal neutrons. Appl Radiat Isot 67:70–72CrossRefGoogle Scholar
  21. 21.
    Dóczi R, Csikai J, Sanami T, Fayez-Hassan M (2005) Bulk hydrogen analysis using epithermal neutrons. J Radioanal Nucl Chem 266(1):11–17CrossRefGoogle Scholar
  22. 22.
    Dóczi R, Csikai J (2008) An improved method for bulk hydrogen analysis using epithermal neutrons. Appl Radiat Isot 66:1870–1872CrossRefGoogle Scholar
  23. 23.
    Papp A, Csikai J (2010) Studies on the properties of an epithermal-neutron hydrogen analyzer. Appl Radiat Isot 68:1677–1681CrossRefGoogle Scholar
  24. 24.
    Grosse M, vandenBerg M, Goule C, Lehmann E, Schillinger B (2011) In-situ neutron radiography investigations of hydrogen diffusion and absorption in zirconium alloys. Nucl Instrum Methods Phys Res A651:253–257Google Scholar
  25. 25.
    El-Abd A (2004) Analysis of water migration in porous building material using neutron and gamma radiography. PhD thesis (unpublished)Google Scholar
  26. 26.
    El Abd A, Milczarek JJ (2004) Neutron radiography study of water absorption in porous building materials: anomalous diffusing analysis. J Phys D Appl Phys 37:2305–2313CrossRefGoogle Scholar
  27. 27.
    El Abd A, Czachor A, Milczarek J (2009) Neutron radiography determination of water diffusivity in fired clay brick. Appl Radiat Isot 67:556–559CrossRefGoogle Scholar
  28. 28.
    Poulikakos LD, Sedighi Gilani M, Derome D, Jerjen I, Vontobel P (2013) Time resolved analysis of water drainage in porous asphalt concrete using neutron radiography. Appl Radiat Isot 77:5–13Google Scholar
  29. 29.
    De Beer FC, Strydom WJ, Griese EJ (2004) The drying process of concrete: a neutron radiography study. Appl Radiat Isot 61:617–623CrossRefGoogle Scholar
  30. 30.
    Domanus J. C. (ed.) (1992) Practical neutron radiography, Kluwer academic publisherGoogle Scholar
  31. 31.
    Zhang P, Wittmann FH, Zhao T, Lehmann EH, Vontobel P (2011) Neutron radiography, a powerful method to determine time-dependent moisture distributions in concrete. Nucl Eng Des 241:4758–4766CrossRefGoogle Scholar
  32. 32.
    Joos A, Schmitz G, Mühlbauer MJ, Schillinger B (2010) Investigation of moisture phase change in porous media using neutron radiography and gravimetric analysis. Int J Heat Mass Transf 53:5283–5288CrossRefGoogle Scholar
  33. 33.
    Gokhale PP, Hussein EMA (1997) A Cf- 252 neutron transmission technique for bulk detection of explosives. Appl Radiat Isot 48:973–979CrossRefGoogle Scholar
  34. 34.
    Fantidis JG, Nicolaou GE (2011) A transportable fast neutron and dual gamma-ray system for the detection of illicit materials. Nucl Instrum Methods Phys Res A 648:275–284CrossRefGoogle Scholar
  35. 35.
    Cywicka-Jakiel T, Łoskiewicz J, Tracz G (2003) The optimization of the fast neutron and gamma-ray transmission set-up for moisture measurement of coke. Appl Radiat Isot 58:137–142CrossRefGoogle Scholar
  36. 36.
    Bartle CM (1999) Comparison of the response of raw wool to simultaneous neutron and gray (neugat) transmission and simultaneous dual energy γ-ray (gamgat) transmission. Appl Radiat Isot 50:859–866CrossRefGoogle Scholar
  37. 37.
    Nordlund A, Lindén P, Pór G, Solymar M, Dahl B (2001) Measurements of water content in geological samples using transmission of fast neutrons. Nucl Instrum Methods Phys Res A 462:457–462CrossRefGoogle Scholar
  38. 38.
    Naqvi AA (2003) Moisture measurements of wood and sugar samples using neutron transmission technique. Nucl Instrum Methods Phys Res A 497:569–576CrossRefGoogle Scholar
  39. 39.
    Granada JR, Santisteban JR, Mayer RE (1995) Non-destructive determination of very low hydrogen content in metals with the use of neutron techniques. Physica B213:1005–1007Google Scholar
  40. 40.
    Standard Test Method for Measuring Moisture Vapour Emission Rate of Concrete Subfloor Using Anhydrous Calcium Chloride, ASTM F1869–04Google Scholar
  41. 41.
    Desdin L, Ceballos C (2000) Neutron reflection method for the fast estimation of neutron removal cross section in hydrogenous materials. J Radioanal Nucl Chem 243(3):835–837CrossRefGoogle Scholar
  42. 42.
    Desdin L, García LM (2000) Neutron reflection method for the fast estimation of neutron removal cross section in complex materials. J Radioanal Nucl Chem 246(2):411–412CrossRefGoogle Scholar
  43. 43.
    El Abd A, Abdel-Monem AM, Kansouh WA (2013) Experimental determination of moisture distributions in fired clay brick using a Cf -252 source: a neutron transmission study. Appl Radiat Isot 74:78–85Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  1. 1.Reactor Physics Department, Nuclear Research CenterAtomic Energy AuthorityCairoEgypt

Personalised recommendations