Skip to main content
Log in

Non-destructive compositional analysis of sol–gel synthesized lithium titanate (Li2TiO3) by particle induced gamma-ray emission and instrumental neutron activation analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Lithium titanate, one of the important tritium breeding materials in D–T based fusion reactor under ITER programme, was synthesized through sol–gel route. For chemical quality control of finished product, it was necessary to quantify the lithium and titanium contents. As this ceramic sample is difficult to dissolve, non-destructive analytical methods are preferred for compositional analysis. In the present work, two non-destructive nuclear analytical methods namely particle induced gamma-ray emission (PIGE) using proton beam and instrumental neutron activation analysis (INAA) using reactor neutrons were standardized for the determination of lithium and titanium concentrations, respectively and applied to eleven samples of lithium titanate. To the best of our knowledge, Li quantification in lithium titanate sample is being reported for the first time using PIGE. For quantifications of Li and Ti, 478 keV prompt gamma-ray from 7Li (p, p′γ) 7Li and 320 keV gamma-ray from 50Ti (n,γ) 51Ti were measured, respectively, by high resolution gamma-ray spectrometry. The PIGE and INAA methods were validated using several synthetic samples containing lithium and titanium, respectively. Concentrations of lithium and titanium and Li/Ti mole ratios were evaluated and compared with the stoichiometric concentration of Li2TiO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Roux N, Avon J, Floreancig A, Mougin J, Rasneur B, Ravel S (1996) J Nucl Mater 233–236:1431–1435

    Article  Google Scholar 

  2. Gierszewski P, Miller J, Sullivan J, Verrall R, Earnshaw J, Ruth D, Macauley-Newcombe R, Williams G (2005) Fusion Eng Des 75–79:877–880

    Google Scholar 

  3. Giancarli L, Chuyanov V, Abdou M, Akiba M, Hong BG, Lässer R, Pan C, Strebkov Y, TBWG Team (2007) J Nucl Mater 367:1271–1280

    Article  Google Scholar 

  4. Govindan R, Alamelu D, Shah RV, Vittal Rao TV, Bamankar YR, Parab AR, Sasi Bhushan K, Mukerjee SK, Aggarwal SK (2010) Anal Methods 2:1752–1755

    Article  CAS  Google Scholar 

  5. Gierszewski P (1998) Fusion Eng Des 39–40:739–743

    Article  Google Scholar 

  6. Tang Tao, Zhang Zhi, Luo Jian-Bo Meng De-Li (2009) Fusion Eng Des 84:2124–2130

    Article  CAS  Google Scholar 

  7. Mandal D, Sathiyamoorthy D, Govardhana Rao V (2012) Fusion Eng Des 87:7–12

    Article  CAS  Google Scholar 

  8. Vittal Rao TV, Bamankar YR, Mukerjee SK, Aggarwal SK (2012) J Nucl Mater 426:102–108

    Article  CAS  Google Scholar 

  9. Li Yunjiao, Cang Xu, Wang Xuanyu, Li Lin, Kong Long (2012) Mater Lett 89:25–27

    Article  CAS  Google Scholar 

  10. Pedarnig JD, Heitz J, Stehrer T, Praher B, Praher B, Viskup R, Siraj M, Moser A, Vlad A, Bodea MA, Bodea MA, Ba¨uerle D, Hari Babu N, Cardwell DA (2008) Spectrochim Acta B63:1117–1121

    Google Scholar 

  11. Chhillar S, Acharya R, Pai RV, Sodaye S, Mukerjee SK, Pujari PK (2012) J Radioanal Nucl Chem 293:437–441

    Article  CAS  Google Scholar 

  12. Savidou A, Aslanoglou X, Paradellis T, Pilakouta M (1999) Nucl Instrum Methods B152:12–18

    Google Scholar 

  13. Mateus R, Jesus AP, Braizinha B, Cruz J, Pinto JV, Riberio JP (2002) Nucl Instrum Methods B190:117–121

    Google Scholar 

  14. Chhillar S, Acharya R, Sodaye S, Sudarshan K, Santra S, Mishra RK, Kaushik CP, Choudhury RK, Pujari PK (2012) J Radioanal Nucl Chem 294:115–119

    Article  CAS  Google Scholar 

  15. Kiss ÃZ, Koltay E, Nyako B, Somorjai E, Antilla A, Räisäien JJ (1985) J Radioanal Nucl Chem 89:123–141

    Article  CAS  Google Scholar 

  16. Šmit Z, Tartari F, Stamati F, Vevecka A, Priftaj, Istenic J (2013) Nucl Instrum Methods B296:7–13

    Google Scholar 

  17. Karamanis DT, Aslanoglou XA, Assimakopoulos PA, Gangas NH (1999) J Radioanal Nucl Chem 242:3–9

    Article  CAS  Google Scholar 

  18. Volfinger M, Robert JL (1994) J Radioanal Nucl Chem 185:273–291

    Article  CAS  Google Scholar 

  19. Havránek V, Kucera J, Randa Z, Vosecek V (2004) J Radioanal Nucl Chem 259:325–329

    Article  Google Scholar 

  20. Samudralwar DL, Robertson LD (1993) J Radioanal Nucl Chem 169:259–267

    Article  CAS  Google Scholar 

  21. Weicheng Zhang, Tianmei Zhang, Xiangguo Lei (1991) J Radioanal Nucl Chem 151:313–317

    Article  Google Scholar 

  22. Habrioux A, Surblé S, Berger P, Khodja H, Affroux AD, Mailley S, Gutel T, Patoux S (2012) Nucl Instrum Methods B290:13–18

    Google Scholar 

  23. Mima K, Gonzalez-Arrabal R, Azuma H, Yamazaki A, Okuda C, Ukyo Y, Sawada H, Fujita K, Kato Y, Perlado JM, Nakai S (2012) Nucl Instrum Methods B290:79–84

    Google Scholar 

  24. Mateus R, Jesus AP, Fonseca M, Luis H, Ribeiro JP (2007) Nucl Instrum Methods B264:340–344

    Google Scholar 

  25. Mukhopadhyay PK (2001) Symposium on Intelligent Nuclear Instrumentation Mumbai (INIT-2001), Bhabha Atomic Research Centre, Mumbai, p 307

  26. Izquierdo G, West AR (1980) Mater Res Bull 15:1655–1660

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Dr. A. Goswami, Head, RCD, BARC for his support and keen interest in this study. Authors thank Dr. P. Singh, Head, IADD, Mr. S. K. Gupta, Mr. A. Agarwal and other FOTIA crew members of IADD, BARC, Dr. S. Santra, NPD, BARC, Dr. R. Tripathi and Dr. S. Sodaye, RCD, BARC for their support and help during experimental work using PIGE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Acharya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chhillar, S., Acharya, R., Vittal Rao, T.V. et al. Non-destructive compositional analysis of sol–gel synthesized lithium titanate (Li2TiO3) by particle induced gamma-ray emission and instrumental neutron activation analysis. J Radioanal Nucl Chem 298, 1597–1603 (2013). https://doi.org/10.1007/s10967-013-2609-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-013-2609-5

Keywords

Navigation