Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 299, Issue 3, pp 1209–1212 | Cite as

Synthesis of radioactive gold nanoparticle in surfactant medium

  • Swadesh Mandal
Article

Abstract

The present study describes the synthesis of radioactive gold nanoparticle in surfactant medium. Proton irradiated stable 197Au and radioactive 198Au were simultaneously used for production of radioactive gold nanoparticle. Face centered cubic gold nanoparticles with size of 4–50 nm were found in proton irradiated gold foil. However, the size of nanoparticle varies with pH using both stable and radioactive gold.

Keywords

Radioactive gold nanoparticle 198Au 196Au Triton X-114 

Notes

Acknowledgement

The author sincerely acknowledges to the Trace Ultra Trace Analysis and Isotope Production (TULIP) SINP-DAE XII 5-year plan project. Special thanks to the Professor Susanta Lahiri for his remarkable support to prepare this manuscript, E.M group for the study of TEM images, and ECMP Division to the study of the XRD.

References

  1. 1.
    Weaver S, Taylor D, Gale W, Mills G (1996) Photoinitiated reversible formation of small gold crystallites in polymer gels. Langmuir 12:4618CrossRefGoogle Scholar
  2. 2.
    Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter CS (2008) Gold nanoparticles in biology: beyond toxicity in cellular imaging. Acc Chem Res 41:1721CrossRefGoogle Scholar
  3. 3.
    Han G, Ghosh P, Rotello VM (2007) Functionalized gold nanoparticles for drug delivery. Nanomedicine 2:113CrossRefGoogle Scholar
  4. 4.
    Porta F, Rossi M (2003) Gold nanostructured materials for the selective liquid phase catalytic oxidation. J Mol Catal A 204:553CrossRefGoogle Scholar
  5. 5.
    Yu YY, Chang SS, Lee CL, Wang CRC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661CrossRefGoogle Scholar
  6. 6.
    Nakahasi M, Takatani HH, Kobayashi Y, Hori F, Taniguchi R, Iwase A, Oshima R (2005) Characterization of binary gold/platinum nanoparticles prepared by sonochemistry technique. Appl Surf Sci 241:209CrossRefGoogle Scholar
  7. 7.
    Murphy CJ, Sau TK, Gole AM, Orendroff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857CrossRefGoogle Scholar
  8. 8.
    Cao C, Park S, Sim SJ (2008) Seedless synthesis of octahedral gold nanoparticles in condensed surfactant phase. J Colloid Interface Sci 322:152CrossRefGoogle Scholar
  9. 9.
    Shen M, Du YK, Rong HL, Li JR, Li J (2005) Preparation of hydrophobic gold nanoparticles with safe organic solvents by microwave irradiation method. Colloid Surf A 257:439CrossRefGoogle Scholar
  10. 10.
    Yu W, Tu W, Liu H (1999) Synthesis of nanoscale platinum colloids by microwave dielectric heating. Langmuir 15:6CrossRefGoogle Scholar
  11. 11.
    Roy K, Lahiri S (2008) In situ gamma radiation: one step environmentally benign method to produce gold–palladium bimetallic nanoparticles. Anal Chem 80:7504CrossRefGoogle Scholar
  12. 12.
    Roy K, Lahiri S (2006) A green method for synthesis of radioactive gold nanoparticles. Green Chem 8:1063CrossRefGoogle Scholar
  13. 13.
    Barta J, Pospisil M, Cuba V (2010) Photo- and radiation-induced preparation of nanocrystalline copper and cuprous oxide catalysts. J Radioanal Nucl Chem 286:611CrossRefGoogle Scholar
  14. 14.
    Ekoko BG, Zhou R, Li J, Xin LH, Tondozi K (2004) Synthesis of nanocomposite, (CdxZn1−x)S by gamma-irradiation in an aqueous system. J Radioanal Nucl Chem 262:751CrossRefGoogle Scholar
  15. 15.
    Sadeghi M, Hamidreza JA, Sayed JA, Sodeh SS, Mohamadreza KB (2012) Production of cationic 198Au3+ and nonionic 198Au0 for radionuclide therapy applications via the natAu(n, γ)198Au reaction. J Radioanal Nucl Chem 293:45CrossRefGoogle Scholar
  16. 16.
    Liu JF, Liu R, Yin YG, Jiang GB (2009) Use of Triton X-114 as a weak capping agent for one-pot aqueous phase synthesis of ultrathin noble metal nanowires and a primary study of their electrocatalytic activity. Chem Commun 12:1514CrossRefGoogle Scholar
  17. 17.
    He H, Xie C, Ren J (2008) Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging. Anal Chem 80:5951CrossRefGoogle Scholar
  18. 18.
    Chen J, Wang C, Irudayaraj J (2009) Ultrasensitive protein detection in blood serum using gold nanoparticle probes by single molecule spectroscopy. J Biomed Opt 14:1–040501Google Scholar
  19. 19.
    Borgdorff AJ, Choquet D (2002) Regulation of AMPA receptor lateral movements. Nature 417:649CrossRefGoogle Scholar
  20. 20.
    Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, Richards-Kortum R (2003) Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63:1999Google Scholar
  21. 21.
    El-Sayed IH, Huang XH, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: Applications in oral cancer. Nano Lett 5:829CrossRefGoogle Scholar
  22. 22.
    Bhakt MK, Sadeghi M, Tenreiro C (2012) A novel technique for simultaneous diagnosis and radioprotection by radioactive cerium oxide nanoparticles: study of cyclotron production of Ce-137m. J Radioanal Nucl Chem 292:53CrossRefGoogle Scholar
  23. 23.
    Chanda N, Kan P, Watkinson LD, Shukla R, Zambre A, Carmack TL, Engelbrecht H, Lever JR, Katti K, Fent GM, Casteel SW, Miller WH, Jurisson S, Botte E, Robertson JD, Cutler C, Dovrovolskaia M, Kannan R, Katti KV (2010) Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA-198AuNP nanoconstruct in prostate tumor-bearing mice. Nanomedicine 6:201Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  1. 1.Chemical Sciences DivisionSaha Institute of Nuclear PhysicsKolkataIndia

Personalised recommendations