Journal of Radioanalytical and Nuclear Chemistry

, Volume 298, Issue 2, pp 853–865 | Cite as

Activation cross-sections of longer lived products of proton induced nuclear reactions on cobalt up to 70 MeV

  • F. Ditrói
  • F. Tárkányi
  • S. Takács
  • A. Hermanne
  • H. Yamazaki
  • M. Baba
  • A. Mohammadi


As a part of our series of studies on charged particle induced reactions on various target materials, proton induced excitation functions on natural cobalt have been determined by using the stacked-foil technique. In these measurements the radionuclides 55,56,57,58Co, 51Cr, 52,54,56Mn and 56,57Ni have been identified. For the above mentioned nuclides the cross-sections were derived from the measured activities and were compared with the literature data and with the results of EMPIRE code calculations and tabulated values in the TENDL 2011 library (based on TALYS code calculations). The agreement with previous measurements and with theoretical values was acceptable.


Proton induced cross-sections Cobalt target Yield calculation Thin layer activation 



This study was partly performed in the frame of the MTA-JSPS and MTA-FWO (Vlaanderen) collaboration programs. The authors thank the different research projects and their respective institutions for the practical help and providing the use of the facilities for this study.


  1. 1.
    Spellerberg S, Reimer P, Blessing G, Coenen HH, Qaim SM (1998) Production of 55Co and 57Co via proton induced reactions on highly enriched (58)Ni. Appl Radiat Isot 49(12):1519–1522. doi: 10.1016/S0969-8043(97)10119-1 CrossRefGoogle Scholar
  2. 2.
    Uddin MS, Hagiwara M, Baba M, Tárkányi F, Ditrói F (2005) Experimental studies on excitation functions of the proton-induced activation reactions on yttrium. Appl Radiat Isot 63(3):367–374. doi: 10.1016/j.apradiso.2005.04.006 CrossRefGoogle Scholar
  3. 3.
    Ditrói F, Tárkányi F, Takács S, Hermanne A, Baba M, Ignatyuk AV (2010) Investigation deuteron-induced reactions on cobalt. Nucl Instrum Methods B 268(17–18):2571–2577. doi: 10.1016/j.nimb.2010.06.033 CrossRefGoogle Scholar
  4. 4.
    Tárkányi F, Ditrói F, Szelecsényi F, Sonck M, Hermanne A (2002) Measurement and evaluation of the excitation functions for alpha particle induced nuclear reactions on niobium. Nucl Instrum Methods B 198(1–2):11–31CrossRefGoogle Scholar
  5. 5.
    Tárkányi F, Ditrói F, Takács S, Csikai J, Hermanne A, Uddin MS, Hagiwara M, Baba M, Shubin YN, Dityuk AI (2004) Activation cross-sections of light ion induced nuclear reactions on platinum: proton induced reactions. Nucl Instrum Methods B 226(4):473–489. doi: 10.1016/j.nimb.2004.06.042 Google Scholar
  6. 6.
    Hermanne A, Tárkányi F, Ditrói F, Takács S, Rebeles RA, Uddin MS, Hagiwara M, Baba M, Shubin Y, Kovalev SF (2006) Experimental study of the excitation functions of proton induced reactions on Sn-nat up to 65 MeV. Nucl Instrum Methods B 247(2):180–191. doi: 10.1016/j.nimb.2006.02.005 CrossRefGoogle Scholar
  7. 7.
    Ditrói F, Takács S, Tárkányi F, Smith RW, Baba M (2011) Investigation of proton and deuteron induced reactions on cobalt. J Korean Phys Soc 59(2):1697–1700. doi: 10.3938/Jkps.59.1697 Google Scholar
  8. 8.
    Koning AJ, Hilaire S, Duijvestijn MC (2007) TALYS-1.0. Paper presented at the International Conference on Nuclear Data for Science and Technology, NiceGoogle Scholar
  9. 9.
    Koning AJ, Rochman D (2011) TALYS-based evaluated nuclear data library version 4. Nuclear Research and Consultancy Group (NRG), PettenGoogle Scholar
  10. 10.
    Herman M, Capote R, Carlson BV, Oblozinsky P, Sin M, Trkov A, Wienke H, Zerkin V (2007) EMPIRE: nuclear reaction model code system for data evaluation. Nucl Data Sheets 108(12):2655–2715. doi: 10.1016/j.nds.2007.11.003 CrossRefGoogle Scholar
  11. 11.
    Herman M, Capote R, Sin M, Trkov A, Carlson B, Oblozinsky P, Mattoon C, Wienke H, Hoblit S, Cho Y-S, Plujko V, Zerkin V (2012) Nuclear reaction model code EMPIRE-3.1 (Rivoli). Accessed 30 June 2013
  12. 12.
    Tárkányi F, Takács S, Gul K, Hermanne A, Mustafa MG, Nortier M, Oblozinsky P, Qaim SM, Scholten B, Shubin YN, Youxiang Z (2001) Beam monitor reactions (Chapter 4). Charged particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions, vol 1211. TECDOC 1211, IAEA, ViennaGoogle Scholar
  13. 13.
    Capote R, Herman M, Oblozinsky P, Young PG, Goriely S, Belgya T, Ignatyuk AV, Koning AJ, Hilaire S, Plujko VA, Avrigeanu M, Bersillon O, Chadwick MB, Fukahori T, Ge Z, Han Y, Kailas S, Kopecky J, Maslov VM, Reffo G, Sin M, Soukhovitskii ES, Talou P (2009) Reference input parameter library (RIPL-3). Nucl Data Sheets 110(12):3107–3214CrossRefGoogle Scholar
  14. 14.
    Hilaire S, Koning AJ, Goriely S (2010) Microscopic cross sections: an utopia? EPJ Web Conf 8:02004CrossRefGoogle Scholar
  15. 15.
    Deconninck G (1978) Introduction to radioanalytical physics. Nuclear methods monographs, vol 1. Elsevier Scientific publishing company; distribution for the U.S.A. and Canada, Elsevier/North-Holland, Amsterdam, New YorkGoogle Scholar
  16. 16.
    NuDat 2.5 database (2011) National Nuclear Data Center, Brookhaven National Laboratory. Accessed 30 June 2013
  17. 17.
    Q-value calculator (2003) NNDC, Brookhaven National Laboratory. Accessed 30 June 2013
  18. 18.
    International-Bureau-of-Weights-and-Measures (1993) Guide to the expression of uncertainty in measurement, 1st edn. International Organization for Standardization, GenèveGoogle Scholar
  19. 19.
    Haasbroek FJ, Steyn J, Neirinckx RD, Burdzik GF, Cogneau M, Wanet P (1977) Thick-target yields of Na-22 in magnesium, Fe-55 in cobalt, Co-56, Co-57 and Co-58 in nickel and Hf-175 in tantalum by proton-bombardment in energy-range up to 100 Mev. Int J Appl Radiat Isot 28(5):533–534. doi: 10.1016/0020-708x(77)90190-9 CrossRefGoogle Scholar
  20. 20.
    Michel R, Brinkmann G, Weigel H, Herr W (1979) Measurement and hybrid-model analysis of proton-induced reactions with V, Fe and Co. Nucl Phys A 322(1):40–60. doi: 10.1016/0375-9474(79)90332-4 CrossRefGoogle Scholar
  21. 21.
    Michel R, Bodemann R, Busemann H, Daunke R, Gloris M, Lange HJ, Klug B, Krins A, Leya I, Lupke M, Neumann S, Reinhardt H, SchnatzButtgen M, Herpers U, Schiekel T, Sudbrock F, Holmqvist B, Conde H, Malmborg P, Suter M, DittrichHannen B, Kubik PW, Synal HA, Filges D (1997) Cross sections for the production of residual nuclides by low- and medium-energy protons from the target elements C, N, O, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Ba and Au. Nucl Instrum Methods B 129(2):153–193. doi: 10.1016/S0168-583x(97)00213-9 Google Scholar
  22. 22.
    Sharp RA, Diamond RM, Wilkinson G (1956) Nuclear reactions of cobalt with protons from 0- to 100-MeV energy. Phys Rev 101:1493–1504CrossRefGoogle Scholar
  23. 23.
    Johnson PC, Lagunassolar MC, Avila MJ (1984) The indirect production of no-carrier-added Co-57 via the Co-59 (P,3n) Ni-57-Co-57 reaction. Int J Appl Radiat Isot 35(5):371–376. doi: 10.1016/0020-708x(84)90044-9 CrossRefGoogle Scholar
  24. 24.
    Stueck R (1983) Proton induced reactions on Ti, V, Mn, Fe, Co and Ni. Measurement and hybrid model analysis of integral excitation functions and their application in model calculation for the production of cosmogenic nuclides. University of Cologne, CologneGoogle Scholar
  25. 25.
    Rudstam G (1956) Ph.D. Thesis. University of Uppsala, UppsalaGoogle Scholar
  26. 26.
    Schoen NC, Orlov G, Mcdonald RJ (1979) Excitation-functions for radioactive isotopes produced by proton-bombardment of Fe, Co, and W in the energy-range from 10 to 60 MeV. Phys Rev C 20(1):88–92Google Scholar
  27. 27.
    Levkovskii VN (1991) The cross-sections of activation of nuclides of middle-range mass (A = 40–100) by protons and alpha particles of middle range energies (E = 10–50 MeV). Inter-Vesy, MoscowGoogle Scholar
  28. 28.
    Cohen BL, Newman E, Handley TH (1955) (p,pn) + (p,2n) and (p,2p) cross sections in medium weight elements. Phys Rev 99(3):723–727CrossRefGoogle Scholar
  29. 29.
    Wagner GD, Wiig EO (1954) Reactions of cobalt with protons at 60, 100, 170, and 240 MeV. Phys Rev 96(4):1100–1103CrossRefGoogle Scholar
  30. 30.
    Haller IB, Rudstam G (1961) Relative yields of the isomeric pairs 69gZn-69mZn and 52gMn-52mMn in some spallation reactions induced by 20–153 MeV protons. Inorg Nucl Chem 19:1–8CrossRefGoogle Scholar
  31. 31.
    Dmitriev PP, Molin GA (1981) Radioactive nuclide yields for thick target at 22 MeV proton energy. Vop At Nauki i Tekhn, SerYadernye Konstanty 44(5):43Google Scholar
  32. 32.
    Abe K, Iizuka A, Hasegawa A, Morozumi S (1984) Induced radioactivity of component materials by 16-MeV protons and 30-MeV alpha-particles. J Nucl Mater 123(1–3):972–976CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • F. Ditrói
    • 1
  • F. Tárkányi
    • 1
  • S. Takács
    • 1
  • A. Hermanne
    • 2
  • H. Yamazaki
    • 3
  • M. Baba
    • 3
  • A. Mohammadi
    • 3
  1. 1.Institute for Nuclear Research of the Hungarian Academy of Sciences (ATOMKI)DebrecenHungary
  2. 2.Cyclotron LaboratoryVrije Universiteit Brussel (VUB)BrusselsBelgium
  3. 3.Cyclotron Radioisotope Center (CYRIC)Tohoku UniversitySendaiJapan

Personalised recommendations