Journal of Radioanalytical and Nuclear Chemistry

, Volume 298, Issue 3, pp 1819–1822 | Cite as

Delayed-neutron activation analysis at NIST

  • Sofia M. Eriksson
  • Elizabeth A. Mackey
  • Richard M. Lindstrom
  • George P. Lamaze
  • Kelly P. Grogan
  • Dennis E. Brady


An automated delayed-neutron activation analysis system has been installed at the NIST research reactor. This work involved characterization of the transfer time of the system, evaluation of blanks, and tests of the system’s analytical capabilities through quantitative analysis for uranium in several natural matrix standard reference materials (SRMs). The calibration curve was shown to be linear up to at least 20 μg of uranium, and the well-thermalized reactor irradiation position makes the system insensitive to thorium and oxygen. For SRMs 1646a Estuarine Sediment and 2710a Montana Soil the values determined for this work agree with the reference and certified values, respectively. The mass fraction of uranium in SRM 695 Multi-Nutrient Fertilizer is the first reported for this material. For this system and the irradiation, transfer, and counting times used, the limit of detection for natural uranium is 20 ng, which corresponds to approximately 200 pg of 235U.


Activation analysis Delayed neutrons Fissile measurement Nuclear forensics Uranium determination 



We thank Jeffrey Ziegler (NIST) for constructing the neutron detector electronics, Nathan Bickford and John Langland (NIST) for their help in the early stages of this work, and Alice Mignerey (University of Maryland) for additional encouragement and discussions. Identification of commercial products does not constitute endorsement by the authors or their institutions.


  1. 1.
    Binney SE, Scherpelz RI (1978) Nucl Instrum Methods 154:413–431CrossRefGoogle Scholar
  2. 2.
    Amiel S (1981) In: Amiel S (ed) Nondestructive Activation Analysis. Elsevier, Amsterdam, pp 43–52Google Scholar
  3. 3.
    Smith SM (2013) History of the National Uranium Resource Evaluation Hydrogeochemical and Stream Sediment Reconnaissance Program. Accessed 3 Apr 2013
  4. 4.
    Moon JH, Kim SH, Chung YS, Lin JM, Ahn GH, Koh MS (2009) J Radioanal Nucl Chem 282:33–35CrossRefGoogle Scholar
  5. 5.
    El-Taher A (2010) Appl Radiat Isot 68:1189–1192CrossRefGoogle Scholar
  6. 6.
    Sellers MT, Kelly DG, Corcoran EC (2012) J Radioanal Nucl Chem 291:281–285CrossRefGoogle Scholar
  7. 7.
    Donohue DL, Zeisler R (1993) Anal Chem 65:359A–368ACrossRefGoogle Scholar
  8. 8.
    Donohue DL (2002) Anal Chem 74:28A–35ACrossRefGoogle Scholar
  9. 9.
    Mayer K, Wallenius M, Ray I (2005) Analyst 130:433–441CrossRefGoogle Scholar
  10. 10.
    Glasgow D (2008) J Radioanal Nucl Chem 276:207–211CrossRefGoogle Scholar
  11. 11.
    Lindstrom RM, Zeisler R, Mackey EA, Liposky PJ, Popelka-Filcoff RS, Williams RE (2008) J Radioanal Nucl Chem 278:665–669CrossRefGoogle Scholar
  12. 12.
    Winchester MR (NIST) (2012) Pers communGoogle Scholar
  13. 13.
    Currie LA (1968) Anal Chem 40:586–593CrossRefGoogle Scholar
  14. 14.
    Leachman RB, Schmitt HW (1954) J Nucl Energy 4:38–43Google Scholar
  15. 15.
    Amiel S (1962) Anal Chem 34:1683–1692CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Sofia M. Eriksson
    • 1
    • 2
  • Elizabeth A. Mackey
    • 3
  • Richard M. Lindstrom
    • 3
  • George P. Lamaze
    • 3
  • Kelly P. Grogan
    • 3
  • Dennis E. Brady
    • 4
  1. 1.Department of ChemistryUniversity of MarylandCollege ParkUSA
  2. 2.Swedish Defense Research AgencyUmeåSweden
  3. 3.Chemical Sciences DivisionNational Institute of Standards and TechnologyGaithersburgUSA
  4. 4.NIST Center for Neutron ResearchNational Institute of Standards and TechnologyGaithersburgUSA

Personalised recommendations