Journal of Radioanalytical and Nuclear Chemistry

, Volume 298, Issue 2, pp 1303–1307 | Cite as

Investigation of mass attenuation coefficients of water, concrete and bakelite at different energies using the FLUKA Monte Carlo code

  • Nilgun Demir
  • Urkiye Akar Tarim
  • Maria-Ana Popovici
  • Zehra Nur Demirci
  • Orhan Gurler
  • Iskender Akkurt


The mass attenuation coefficients of water, bakelite and concrete sample defined in the simulation package were obtained using the FLUKA Monte Carlo code at 59.5, 80.9, 140.5, 356.5, 661.6, 1173.2 and 1332.5 keV photon energies. The results for the mass attenuation coefficients obtained by simulation have been compared with experimental and the theoretical ones and good agreement has been observed. The results indicate that this process can be followed to determine the data on the attenuation of gamma-rays with the several energies in other materials. Also, the deposited energy by 661.6 keV photons at several thicknesses of each media was determined as being an important data for radiation shielding studies.


Water Bakelite Concrete FLUKA Energy deposition Mass attenuation coefficient 


  1. 1.
    Abdel-Rahman MA, Badawi EA, Abdel-Hady YL, Kamel N (2000) Effect of sample thickness on the measured mass attenuation coefficients of some compounds and elements for 59.54, 661.6 and 1332.5 keV γ-rays. Nucl Instrum Methods Phys Res A 447:432–436CrossRefGoogle Scholar
  2. 2.
    Singh K, Singh H, Sharma G, Gerward L, Khanna A, Kumar R, Nathuram R, Sahota HS (2005) Gamma-ray shielding properties of CaO–SrO–B2O3 glasses. Radiat Phys Chem 72:225–228CrossRefGoogle Scholar
  3. 3.
    Chanthima N, Prongsamrong P, Kaewkhao J, Limsuwan P (2012) Simulated radiation attenuation properties of cement containing with BaSO4 and PbO. Procedia Eng 32:976–981CrossRefGoogle Scholar
  4. 4.
    Demir D, Keleş G (2006) Radiation transmission of concrete including boron waste for 59.54 and 80.99 keV gamma rays. Nucl Instrum Methods Phys Res B 245:501–504CrossRefGoogle Scholar
  5. 5.
    Yılmaz E, Baltas H, Kırıs E, Ustabas İ, Cevik U, El-Khayatt AM (2011) Gamma ray and neutron shielding properties of some concrete materials. Ann Nucl Energy 38:2204–2212CrossRefGoogle Scholar
  6. 6.
    Ramachandran N, Karunakaran Nair K, Abdullah KK, Varier KM (2006) Photon interaction studies using 241Am γ-rays. Pramana J Phys 67:507–517CrossRefGoogle Scholar
  7. 7.
    Akar A, Baltaş H, Çevik U, Korkmaz F, Okumuşoğlu NT (2006) Measurement of attenuation coefficients for bone, muscle, fat and water at 140, 364 and 662 keV γ-ray energies. J Quant Spectrosc Radiat Transf 102:203–211CrossRefGoogle Scholar
  8. 8.
    İshakoğlu A, Baytaş AF (2002) Measurement and evaluation of saturations for water, ethanol and a light non-aqueous phase liquid in a porous medium by gamma attenuation. Appl Rad Isot 56:601–606CrossRefGoogle Scholar
  9. 9.
    Sidhu G, Singh K, Singh P, Mudahar GS (1999) Effect of collimator size and absorber thickness on gamma ray attenuation measurements for bakelite and perspex. Pramana J Phys 53:851–855CrossRefGoogle Scholar
  10. 10.
    Bashter II (1997) Calculation of radiation attenuation coefficients for shielding concretes. Ann Nucl Energy 24:1389–1401CrossRefGoogle Scholar
  11. 11.
    Akkurt I, El-Khayatt AM (2013) Effective atomic number and electron density of marble concrete. J Radioanal Nucl Chem 295:633–638CrossRefGoogle Scholar
  12. 12.
    Gurler O, Akar Tarim U (2012) An investigation on determination of attenuation coefficients for gamma-rays by Monte Carlo method. J Radioanal Nucl Chem 293:397–401CrossRefGoogle Scholar
  13. 13.
    Stankovic SJ, Ilic RD, Jankovic K, Bojovic D, Loncar B (2010) Gamma radiation absorption characteristics of concrete with components of different type materials. Acta Phys Pol A 117:812–816Google Scholar
  14. 14.
    Ferrari A, Sala PR, Fasso A, Ranft J (2005) FLUKA: A multi-particle transport code, CERN-2005-010, INFN TC_05/11, SLAC-R-773Google Scholar
  15. 15.
    Mark S, Khomchenko S, Shifrin M, Haviv Y, Schwartz JR, Orion I (2007) TVF-NMCRC—A powerful program for writing and executing simulation inputs for the FLUKA Monte Carlo code system. Nucl Instrum Methods Phys Res A 572:929–934CrossRefGoogle Scholar
  16. 16.
    Wielopolski L, Song Z, Orion I, Hanson AL, Hendrey G (2005) Basic considerations for Monte Carlo calculations in soil. Appl Rad Isot 62:97–107CrossRefGoogle Scholar
  17. 17.
    Berger MJ, Hubbell JH, Seltzer SM, Chang J, Coursey JS, Sukumar R, Zucker DS, Olsen K (2010). XCOM: photoncrosssectionsdatabase, NIST standard reference database 8 (XGAM). Accessed Jan 2013
  18. 18.
    Medhat ME (2009) Gamma-ray attenuation coefficients of some building materials available in Egypt. Ann Nucl Energy 36:849–852CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Nilgun Demir
    • 1
  • Urkiye Akar Tarim
    • 1
  • Maria-Ana Popovici
    • 2
  • Zehra Nur Demirci
    • 3
  • Orhan Gurler
    • 1
  • Iskender Akkurt
    • 3
  1. 1.Physics DepartmentFaculty of Arts and Sciences, Uludag UniversityBursaTurkey
  2. 2.Physics DepartmentPolitehnica University of BucharestBucharestRomania
  3. 3.Suleyman Demirel UniversityIspartaTurkey

Personalised recommendations