Solvent extraction of Pu(IV) with TODGA in C6mimTf2N

  • Xiaohong Huang
  • Qiuyue Zhang
  • Jinping Liu
  • Hui He
  • Wenbin Zhu
  • Xiaorong Wang


Studies on the solvent extraction of Plutonium(Pu(IV)) from aqueous nitric acid by N,N,N′,N′-tetraoctyl-diglycolamide (TODGA) in 1-hexyl-3-methylimidazolium-bis(trifluoromethylsulfonyl) imide (C6mimTf2N) room temperature ionic liquid (RTIL) were carried out. It was found that Pu(IV) is extracted into RTIL phase as [Pu(NO3)(TODGA)]3+ through cation exchange mechanism. Extraction reaction equation is obtained by the influence of acidity and extractant concentration, and the parameters of thermodynamic equilibrium constant was calculated.


Solvent extraction Plutonium(IV) TODGA C6mimTf2



Authors thank the NCFC (NO. 91126006) programme for financial support of the project. The authors are also grateful to staffs in Radioecology programme (headed by hehui), Department of RadioChemistry, China Institute of Atomic Energy, for all support in this work.


  1. 1.
    Alok Rout KA, Srinivasan Venkatesan TG, Vasudeva Rao PR et al (2011) Room temperature ionic liquid diluents for the extraction of Eu(III) using TRUEX extractants[J]. J Radioanal Nucl Chem 290:215–219CrossRefGoogle Scholar
  2. 2.
    Alok Rout, Venkatesan KA et al (2011) Ionic liquid extractants in molecular diluents: extraction behavior of plutonium(IV) in 1,3-diketonate ionic liquids. Solvent Extr Ion Exch 29:602–618CrossRefGoogle Scholar
  3. 3.
    Ignatev NV, Biermann UW, Kucheryna A et al (2005) New ionic liquids with tris (perfluoroalkyl) trifluorophosphate (FAP) anions. J Fluor Chem 126:1150–1159CrossRefGoogle Scholar
  4. 4.
    Allen D, Baston G, Bradely AE et al (2002) An investigation of the radiochemical stability of ionic liquids. Green Chem 4:152CrossRefGoogle Scholar
  5. 5.
    Heitzman H, Young BA, Rausch DJ et al (2006) Fluorous ionic liquids as solvents for the liquid–liquid extraction of metal ions by macrocyclic polyethers. Talanta 69(2):527–531CrossRefGoogle Scholar
  6. 6.
    Giridhar P, Venkatesan KA, Srinivasan TG et al (2005) Extraction of uranium(VI) from nitric acid medium by 1.1 M tri-n-butylphosphate in ionic liquid diluent [J]. J Radioanal Nucl Chem 265(1):31–38CrossRefGoogle Scholar
  7. 7.
    Vasudeva Rao PR et al (2012) Potential applications of room temperature ionic liquids for fission products and actinide separation. Sep Sci Technol 47(2):204–222CrossRefGoogle Scholar
  8. 8.
    Billard I et al (2009) Actinide and lanthanide speciation in imidazolium-based ionic liquids. Radiochim Acta 97(7):355–359CrossRefGoogle Scholar
  9. 9.
    Billard I et al (2011) Understanding the extraction mechanism in ionic liquids: UO2 2+/HNO3/TBP/C4-mimTf2N as a case study. Solvent Extr Ion Exch 29(4):577–601CrossRefGoogle Scholar
  10. 10.
    Ansari SA, Mohapatra PK et al (2011) Extraction of caesium(I) from HNO3 medium using room temperature ionic liquid containing calyx[4] crown ligands as the selective extractants. Radiochim Acta 99(4):713–717CrossRefGoogle Scholar
  11. 11.
    Dietz ML, Dzielawa JA (2001) Ion-exchange as a mode of cation transfer into room-temperature ionic liquids containing crown ethers: implications for the “Greenness” of ionic liquids as diluents in liquid–liquid extraction. Chem Commun 20:2124–2125CrossRefGoogle Scholar
  12. 12.
    Stepinski DC, Jensen MP, Dzielawa JA et al (2005) Synergistic effects in the facilitated transfer of metal ions into room-temperature ionic liquids. Green Chem 7(3):151–158CrossRefGoogle Scholar
  13. 13.
    Chun SK, Dzyuba SV, Bartsch RA (2001) Influence of structural variation in room-temperature ionic liquids on the selectivity and efficiency of competitive alkali metal salt extraction by a crown ether. Anal Chem 73(15):3737–3741CrossRefGoogle Scholar
  14. 14.
    Jensen MP, Neuefeind J, Beitz JV et al (2003) Mechanisms of metal ion transfer into room-temperature ionic liquids: the role of anion exchange. J Am Chem Soc 25:15466CrossRefGoogle Scholar
  15. 15.
    Visser AE, Rogers RD (2003) Room-temperature ionic liquids: new solvent for f-element separations and associated solution chemistry. J Solid State Chem 171:109CrossRefGoogle Scholar
  16. 16.
    Nakashima K, Kubota F, Maruyama T et al (2003) Ionic liquids as a novel solvent for lanthanide extraction. Anal Sci 19:1097CrossRefGoogle Scholar
  17. 17.
    Suzuki H, Sasaki Y, Sugo Y et al (2004) Extraction and separation of Am(III) and Sr(II) by N,N,N′,N′-tetraoctyl-3-oxapentanediamide(TODGA). Radiochimca Acta 92(8):463–466Google Scholar
  18. 18.
    Magnusson D, Christiansen B, Glatz JP et al (2007) Partitioning of minor actinides from PUREX raffinate by the TODGA process. Proceedings of Global, Boise, pp. 713–718Google Scholar
  19. 19.
    Hérès X, Sorel C, Miguirditchian M et al (2009) Results of recent counter-current tests on An(III)/Ln(III) separation using TODGA extractant. Proceedings of the Global, ParisGoogle Scholar
  20. 20.
    Lohithakshan KV, Aggarwal SK (2008) Solvent extraction of Pu(IV) with CMPO in 1-octyl 3-methyl imidazolium hexa fluorophosphate(C8mimPF6) room temperature ionic liquid (RTIL). Radiochim Acta 96:93–97CrossRefGoogle Scholar
  21. 21.
    Modolo G et al (2007) Development of a TODGA based process for partitioning of actinides from a PUREX raffinate part I: batch extraction optimization studies and stability tests. Solvent Extr Ion Exch 25(6):703–721CrossRefGoogle Scholar
  22. 22.
    Modolo G et al (2008) Demonstration of a TODGA-based continuous counter-current extraction process for the partitioning of actinides from a simulated PUREX raffinate part II: centrifugal contactor runs. Solvent Extr Ion Exch 26(1):62–76CrossRefGoogle Scholar
  23. 23.
    Magnusson D et al (2009) Demonstration of a TODGA based extraction process for the partitioning of minor actinides from a PUREX raffinate part II: centrifugal contactor run using genuine fuel solution. Solvent Extr Ion Exch 27(1):26–35CrossRefGoogle Scholar
  24. 24.
    Dzyuba SV, Bartsch RA (2001) Efficient synthesis of 1-alkyl(aralkyl)-3-methyl(ethyl) imidazoliumhalides: precursors for room temperature ionic liquids. J Heterocycl Chem 38:265–268CrossRefGoogle Scholar
  25. 25.
    Klatt LN, Rouseff RL (1970) Analysis of the polarographic method of studying metal complex equilibriums. Anal Chem 42:1234CrossRefGoogle Scholar
  26. 26.
    Momoki K, Sato H, Ogawa H (1072) Calculation of successive formation constants from polarographic data using a high-speed digital computer. Anal Chem 1967:39Google Scholar
  27. 27.
    Davies CW (1962) Ion association. Butterworths, LondonGoogle Scholar
  28. 28.
    Inczedy J, Sc D (1976) Analytical applications of complex equilibria, Akademiai Kiado, BudapestGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Xiaohong Huang
    • 1
  • Qiuyue Zhang
    • 1
  • Jinping Liu
    • 1
  • Hui He
    • 1
  • Wenbin Zhu
    • 1
  • Xiaorong Wang
    • 1
  1. 1.Department of RadiochemistryChina Institute of Atomic EnergyBeijingPeople’s Republic of China

Personalised recommendations