Journal of Radioanalytical and Nuclear Chemistry

, Volume 298, Issue 1, pp 405–412 | Cite as

A comparative study of the complexation of Am(III) and Eu(III) with TODGA in room temperature ionic liquid



On the growing awareness of the environmental impact associated with the use of volatile organic diluents, room temperature ionic liquid gained world-wild acceptance as environmentally benign diluents for actinide partitioning. The observed unusual behavior of less extraction efficiency of Eu with TODGA in RTIL in comparison with that of Am-TODGA was addressed in this paper. The stoichiometry of Am-TODGA complex was found to be 1:2 while that of Eu-TODGA was 1:1. More the ligand molecules associated in the metal ligand complex, the organophilicity of the complex will be more and the solubility of the metal–ligand complex in RTIL will be more which reflects in the higher distribution ratio for Am. In RTIL both Am and Eu showed slower kinetics of extraction with TODGA which can be attributed to the high viscosity coefficient of RTIL compared to the molecular diluents. The observed slower kinetics of extraction was quantified and found to follow first order kinetics with the rate constant of 5.5 × 10−4 s−1. The formation constant of Am-TODGA complex was found to be more (4.18 × 108 M−1) than Eu-TODGA complex (3.31 × 108 M−1) in RTIL. The parameters viz. diffusion coefficient, activation energy for Eu(III)/Eu(II) were determined and found to be 3.08 × 10−8/cm2 s−1 (at 303 K) and 39.34 kJ mol−1 respectively. The thermodynamic parameters ΔG, ΔH and ΔS for the reaction were evaluated using the linear regression of the plot of E 0* versus T. The redox reaction was found to be exothermic with decrease in entropy value.


Americium Europium Ionic liquid Ion exchange Extraction kinetics Stoichiometry 


  1. 1.
    Mimura H, Hoshi H, Akiba K, Onodera Y (2001) Separation americium from europium by biopolymer microcapsules enclosing Cyanex 301 extractant. J Radioanal Nucl Chem 247(2):375–379CrossRefGoogle Scholar
  2. 2.
    Hoshi H, Tsuyoshi A, Akiba K (2000) J Radioanal Nucl Chem 243:621CrossRefGoogle Scholar
  3. 3.
    Makrlík E, Sedláková Z, Selucký P, Vaňura P (2012) Solvent extraction of europium trifluoromethanesulfonate into nitrobenzene by using some electroneutral macrocyclic lactam receptors. J Radioanal Nucl Chem 293:699–702CrossRefGoogle Scholar
  4. 4.
    Paiva AP, Malik P (2004) J Radioanal Nucl Chem 261:485CrossRefGoogle Scholar
  5. 5.
    Makrlík E, Vaňura P, Selucký P (2010) J Radioanal Nucl Chem 283:45CrossRefGoogle Scholar
  6. 6.
    Makrlík E, Vaňura P, Selucký P (2010) J Radioanal Nucl Chem 283:571CrossRefGoogle Scholar
  7. 7.
    Makrlík E, Vaňura P, Selucký P, Spıchal Z (2011) J Radioanal Nucl Chem 289:13CrossRefGoogle Scholar
  8. 8.
    van Hecke K, Modolo G (2004) J Radioanal Nucl Chem 261:269CrossRefGoogle Scholar
  9. 9.
    Makrlík E, Vaňura P (2010) J Radioanal Nucl Chem 285:683CrossRefGoogle Scholar
  10. 10.
    Makrlík E, Selucký P, Vaňura P, Budka J (2010) J Radioanal Nucl Chem 286:155CrossRefGoogle Scholar
  11. 11.
    Makrlík E, Vaňura P, Selucký P (2011) J Radioanal Nucl Chem 288:177CrossRefGoogle Scholar
  12. 12.
    Chen J, Veltkamp AC, Booij AS (2002) Separation of trivalent americium and europium by purified Cyanex 301 immobilized in macro porous polymer. J Radioanal Nucl Chem 253(1):31–34CrossRefGoogle Scholar
  13. 13.
    Wang W, Yang YZ, Zhao H, Guo QW, Lu WJ, Lu YM (2012) Extraction of europium by sodium oleate/pentanol/heptane/NaCl microemulsion system. J Radioanal Nucl Chem 292:1093–1098CrossRefGoogle Scholar
  14. 14.
    Rais J, Tachimori S (1994) Extraction of Europium and americium by a mixture of CMPO and dicarbollide. J Radioanal Nucl Chem 188(2):157–162CrossRefGoogle Scholar
  15. 15.
    Sengupta A, Adya VC, Mohapatra PK, Godbole SV, Manchanda VK (2010) Separation and purification of americium from analytical waste solutions. J Radioanal Nucl Chem 283:777–783. doi: 10.1007/s10967-009-0420-0 CrossRefGoogle Scholar
  16. 16.
    Straka M, Korenko M, Lisy F (2010) Electrochemistry of uranium in LiF–BeF2 melt. J Radioanal Nucl Chem 284:245CrossRefGoogle Scholar
  17. 17.
    Gao FX, Wang CS, Liu LS, Guo JH, Chang SW, Li Chang, Li RX, Ouyang YG (2009) Electrode processes of uranium ions and electrodeposition of uranium in molten LiCl–KCl. J Radioanal Nucl Chem 280:207CrossRefGoogle Scholar
  18. 18.
    Martinot L, Lopes L, Marien J, Jérôme C (2002) Electrochemistry of lanthanum and uranium chlorides in organic media: deposition of lanthanum and uranium. J Radioanal Nucl Chem 253:407CrossRefGoogle Scholar
  19. 19.
    Martinot L, Leroy D, Jerome C, Leruth O (1997) Complexation of uranyl ion by polyvinylimidazole: electrochemical preparation and leaching tests investigations. J Radioanal Nucl Chem 224:71CrossRefGoogle Scholar
  20. 20.
    Pribylova GA, Smirnov IV, Novikov AP (2012) Effect of ionic liquids on the extraction of americium by diphenyl (dibutyl) carbamoylmethyl phosphine oxide in dichloroethane from nitric acid solutions. J Radioanal Nucl Chem. doi: 10.1007/s10967-012-2220-1
  21. 21.
    Pribylova GA (2011) Extraction of Am(III) by iphenyl(dibutyl) carbamoylmethyl phosphine oxide in the presence of ionic liquids. J Radioanal Nucl Chem 288(3):693–697CrossRefGoogle Scholar
  22. 22.
    Pribylova GA (2011) Influence of ionic liquids on actinides extraction by diphenyl(dibutyl)carbamoylmethylphosphine oxide in different solvents from nitric acid solution. J Radioanal Nucl Chem 288:693–697CrossRefGoogle Scholar
  23. 23.
    Giridhar P, Venkatesan KA, Srinivasan G, Rao PRV (2005) Extraction of uranium(YI) from nitric acid medium by 1,1 M trin-butylphosphate in ionic liquid diluent. J Radioanal Nucl Chem 263:31–38CrossRefGoogle Scholar
  24. 24.
    Lopes L, Martinot L, Michaux C (1994) Separation of uranium from lanthanum in molecular and ionic organic liquids. J Radioanal Nucl Chem 187(2):99CrossRefGoogle Scholar
  25. 25.
    Martinot L, Bar D, Michaux C (1993) J Radioanal Nucl Chem 170:389CrossRefGoogle Scholar
  26. 26.
    Ansari SA, Pathak PN, Husain M, Prasad AK, Parmar VS, Manchanda VK (2005) N,N,N′,N′-tetraoctyl diglycolamide (TODGA): a promising extractant for actinide-partitioning from high-level waste (HLW). Solv Extr Ion Exch 23:463–479CrossRefGoogle Scholar
  27. 27.
    Verma RS, Namboodiri VV (2001) Solvent-free preparation of ionic liquids using household microwave-oven. Pure Appl Chem 73:1309CrossRefGoogle Scholar
  28. 28.
    Sengupta A, Mohapatra PK, Iqbal M, Huskens J, Verboom W (2012) A highly efficient solvent system containing functionalized diglycolamides and an ionic liquid for americium recovery from radioactive wastes. Dalton Trans 41:6970–6979Google Scholar
  29. 29.
    Jagadeeswara Rao C, Venkatesan KA, Nagarajan K, Srinivasan TG, Vasudeva Rao PR (2010) Electrochemical and thermodynamic properties of europium(III), samarium(III) and cerium(III) in 1-butyl-3-methylimidazolium chloride ionic liquid. J Nucl Mat 399:81CrossRefGoogle Scholar
  30. 30.
    de Castro CSP, De Souza JR, Junior CB (2004) Biophys Chem 112:59–67CrossRefGoogle Scholar
  31. 31.
    Pathak PN, Ansari SA, Godbole SV, Dhobale AR, Manchanda VK (2009) Spectrochim Acta A 73:348–352CrossRefGoogle Scholar
  32. 32.
    Wei M, He Q, Feng X, Chen J (2012) J Radioanal Nucl Chem 293:689–697CrossRefGoogle Scholar
  33. 33.
    Jagadeeswara Rao C, Venkatesan KA, Nagarajan K, Srinivasan TG, Vasudeva Rao PR (2009) Electrochemical behavior of europium (III) in N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. Electrochim Acta 54:4718CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • Arijit Sengupta
    • 1
  • M. S. Murali
    • 1
  • P. K. Mohapatra
    • 1
  1. 1.Radiochemistry DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations