Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 298, Issue 1, pp 277–286 | Cite as

Investigation of production routes for the 161Ho Auger-electron emitting radiolanthanide, a candidate for therapy

  • F. Tárkányi
  • F. Ditrói
  • A. Hermanne
  • S. Takács
  • A. V. Ignatyuk
Article

Abstract

The radiolanthanide 161Ho (2.48 h) is a promising Auger-electron emitter for internal radiotherapy that can be produced with particle accelerators. The excitation functions of the natDy(p,xn)161Ho and natDy(d,x)161Ho reactions were measured up to 40 and 50 MeV respectively by using the stacked foil activation method and γ-ray spectrometry. The experimental data were compared with results of the TALYS code available in the TENDL 2011 library [1]. The main parameters of different production routes are discussed.

Keywords

Medical radioisotopes Therapeutical isotopes Proton and deuteron irradiation 161Ho 162mHo 

Notes

Acknowledgments

This work was performed in the frame of the HAS-FWO Vlaanderen (Hungary–Belgium) project. The authors acknowledge the support of the research project and of the respective institutions in providing the beam time and experimental facilities.

References

  1. 1.
    Koning AJ, Rochman D (2011) TALYS-based Evaluated Nuclear Data Library Version 4. Nuclear Research and Consultancy Group (NRG), Petten, The NetherlandsGoogle Scholar
  2. 2.
    Uusijarvi H, Bernhardt P, Rosch F, Maecke HR, Forssell-Aronsson E (2006) Electron- and positron-emitting radiolanthanides for therapy: aspects of dosimetry and production. J Nucl Med 47(5):807–814Google Scholar
  3. 3.
    Rosch F (2007) Radiolanthanides in endoradiotherapy: an overview. Radiochim Acta 95(6):303–311. doi: 10.1524/ract.2007.95.6.303 CrossRefGoogle Scholar
  4. 4.
    Neves M, Kling A, Oliveira A (2005) Radionuclides used for therapy and suggestion for new candidates. J Radioanal Nucl Chem 266(3):377–384. doi: 10.1007/s10967-005-0920-5 CrossRefGoogle Scholar
  5. 5.
    Stephens BJ (2010) 161Ho + IUDR:optimized photon activation therapy. Vanderbilt University, NashvilleGoogle Scholar
  6. 6.
    Stephens BJ, Mendenhall MH (2010) Holmium-161 produced using 11.6 MeV protons: A practical source of narrow-band X-rays. Appl Radiat Isotopes 68 (10):1928-1932. doi:DOI  10.1016/j.apradiso.2010.05.003
  7. 7.
    Takács S, Tárkányi F, Hermanne A, Rebeles RA (2011) Activation cross sections of proton induced nuclear reactions on natural hafnium. Nucl Instrum Meth B 269(23):2824–2834. doi: 10.1016/j.nimb.2011.08.021 CrossRefGoogle Scholar
  8. 8.
    Tárkányi F, Ditrói F, Takács S, Király B, Hermanne A, Sonck M, Baba M, Ignatyuk AV (2012) Investigation of activation cross-sections of deuteron induced nuclear reactions on natMo up to 50 MeV. Nucl Instrum Meth B 274:1–25CrossRefGoogle Scholar
  9. 9.
    Hermanne A, Tárkányi F, Ditrói F, Takács S, Rebeles RA, Uddin MS, Hagiwara M, Baba M, Shubin Y, Kovalev SF (2006) Experimental study of the excitation functions of proton induced reactions on Sn-nat up to 65 MeV. Nucl Instrum Meth B 247(2):180–191. doi: 10.1016/j.nimb.2006.02.005 CrossRefGoogle Scholar
  10. 10.
    Uddin MS, Hagiwara M, Baba M, Tárkányi F, Ditrói F (2005) Experimental studies on excitation functions of the proton-induced activation reactions on yttrium. Appl Radiat Isotopes 63(3):367–374. doi: 10.1016/j.apradiso.2005.04.006 CrossRefGoogle Scholar
  11. 11.
    Tárkányi F, Ditrói F, Takács S, Csikai J, Hermanne A, Uddin MS, Hagiwara M, Baba M, Shubin YN, Dityuk AI (2004) Activation cross-sections of light ion induced nuclear reactions on platinum: proton induced reactions. Nucl Instrum Meth B 226(4):473–489. doi: 10.1016/j.nimb.2004.06.042 Google Scholar
  12. 12.
    Tárkányi F, Takács S, Gul K, Hermanne A, Mustafa MG, Nortier M, Oblozinsky P, Qaim SM, Scholten B, Shubin YN, Youxiang Z (2001) Beam monitor reactions (Chapter 4). Charged particle cross-section database for medical radioisotope production: diagnostic radioisotopes and monitor reactions.. TECDOC 1211, vol 1211. IAEAGoogle Scholar
  13. 13.
  14. 14.
    Székely G (1985) Fgm—a flexible gamma-spectrum analysis program for a small computer. Comput Phys Commun 34(3):313–324. doi: 10.1016/0010-4655(85)90008-6 CrossRefGoogle Scholar
  15. 15.
    Tárkányi F, Szelecsényi F, Takács S (1991) Determination of effective bombarding energies and fluxes using improved stacked-foil technique. Acta Radiologica, Supplementum 376:72Google Scholar
  16. 16.
    NuDat 2.5 database http://www.nndc.bnl.gov/nudat2/ (2011) National Nuclear Data Center, Brookhaven National Laboratory. http://www.nndc.bnl.gov/nudat2/
  17. 17.
    Q-value calculator (2003) NNDC, Brookhaven National Laboratory. http://www.nndc.bnl.gov/qcalc
  18. 18.
    Andersen HH, Ziegler JF (1977) Hydrogen stopping powers and ranges in all elements. The Stopping and ranges of ions in matter, Volume 3. The Stopping and ranges of ions in matter, vol 3. Pergamon Press, New YorkGoogle Scholar
  19. 19.
    International Bureau of Weights and Measures., International Organization for Standardization (1993) Guide to the expression of uncertainty in measurement, 1st edn. International Organization for Standardization, GenèveGoogle Scholar
  20. 20.
    Bonardi M (1987) The contribution to nuclear data for biomedical radioisotope production from the Milan cyclotron facility. Paper presented at the Consultants Meeting on Data Requirements for Medical Radioisotope Production, Tokyo, JapanGoogle Scholar
  21. 21.
    Mukherjee S, Kumar BB, Rashid MH, Chintalapudi SN (1997) Alpha-particle induced reactions on yttrium and terbium. Phys Rev C 55(5):2556–2562. doi: 10.1103/PhysRevC.55.2556 CrossRefGoogle Scholar
  22. 22.
    Bonesso O, Mosca HO, Nassiff SJ (1989) (Alpha, Xn) Reactions on Tb-159. J Radioan Nucl Ch Le 137(1):29–38. doi: 10.1007/Bf02164556 CrossRefGoogle Scholar
  23. 23.
    Singh NL, Gadkari MS (2001) Preequilibrium decay in alpha particle induced reactions in terbium. Acta Phys Slovaca 51(5):271–279Google Scholar
  24. 24.
    Tulinov AF, Chuvilskaya TV, Shavtvalov LY (1989) Isomeric ratios for deformed nuclei 162m,162gHo and 183m,183gOs obtained in (αn) Reaction. Bull Acad Sci USSR Phys Ser 53(11):209Google Scholar
  25. 25.
    Baskova KA, Krivonogov YV, Makuni BM, Skakun EA, Chugai TV, Shavtvalov LY (1985) Isomer yields of 73−m,−g Se, 162−m,−g Ho and 183−m,−g Os in (alpha,n) reactions. Paper presented at the 35th Ann Conf Nucl Spectrosc Struct At. Nuclei, Leningrad, USSRGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2013

Authors and Affiliations

  • F. Tárkányi
    • 1
  • F. Ditrói
    • 1
  • A. Hermanne
    • 2
  • S. Takács
    • 1
  • A. V. Ignatyuk
    • 3
  1. 1.Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI)DebrecenHungary
  2. 2.Cyclotron LaboratoryVrije Universiteit Brussel (VUB)BrusselsBelgium
  3. 3.Institute of Physics and Power Engineering (IPPE)ObninskRussia

Personalised recommendations