Determination of neptunium in plutonium materials by ICP-MS

  • N. Xu
  • D. Gallimore
  • A. Martinez
  • L. Townsend


An ICP-MS analytical method as an alternative to the current radiochemical method was developed to analyze trace level 237Np in bulk plutonium materials. In this method, 237Np is determined together with a suite of trace elements during a single analysis using one dissolution solution. Method validation was achieved through precision examination, spike recovery study, detection limit determination, comparison of results with the radiochemical method, and laboratory intercomparison studies on Pu metals. The ICP-MS method significantly reduced the analysis cost, the sample amount, consumption of chemicals and waste generation, as well as the sample turnaround time.


ICP-MS Trace elements Neptunium Plutonium metal 



The authors would like to acknowledge the National Nuclear Security Administration for funding the project. We would also like to acknowledge the support of the Plutonium Metal Standards Exchange Program, especially Dr. Lav Tandon, for providing the Pu samples for this study and permitting us to use the interlaboratory exchange data. This publication is LA-UR-12-24410.


  1. 1.
    Morss LR, Fuger J, Edelstein NM (eds) (2006) Chemistry of the actinide and transactinide elements, Springer Publishers, Dordrecht, p 699Google Scholar
  2. 2.
    Rameback H, Skllberg M (1998) J Radioanal Nucl Chem 235:229CrossRefGoogle Scholar
  3. 3.
    Kalmykov SN, Aliev RA, Sapozhnikov DY, Sapozhnikov YA, Afinogenov AM (2004) Appl Radiat Isot 60:595CrossRefGoogle Scholar
  4. 4.
    Ayranov M, Kraehenbuehl U, Sahli H, Roellin S, Burger M (2005) Radiochim Acta 93:631CrossRefGoogle Scholar
  5. 5.
    Kim CK, Seki R, Morita S, Yamasaki SI, Tsumura A, Takaku Y, Igarashi Y, Yamamoto M (1991) J Anal At Spectrom 6:205CrossRefGoogle Scholar
  6. 6.
    Baglan N, Bouvier-Capely C, Cossonnet C (2002) Radiochim Acta 90:267CrossRefGoogle Scholar
  7. 7.
    Vance DE, Belt VF, Oatts TJ, Mann DK (1998) J Radioanal Nucl Chem 234:143CrossRefGoogle Scholar
  8. 8.
    Perna L, Betti M, Maria J, Moreno B, Fuoco R (2001) J Anal At Spectrom 16:26CrossRefGoogle Scholar
  9. 9.
    Moreno B, Betti M, Alonso G (1997) J Anal At Spectrom 12:355CrossRefGoogle Scholar
  10. 10.
    Kuczewski B, Marquardt CM, Seibert A, Geckeis H, Kratz JV, Trautmann N (2003) Anal Chem 75:6769CrossRefGoogle Scholar
  11. 11.
    Qiao J, Hou X, Roos P, Miro M (2010) J Anal At Spectrom 25:1769CrossRefGoogle Scholar
  12. 12.
    Sumiya SH, Morita SH, Tobita K, Kurabayashi M (1994) J Radioanal Nucl Chem 177:149CrossRefGoogle Scholar
  13. 13.
    Date AR, Cheung YY, Stuart ME (1987) Spectrochim Acta 42B:3Google Scholar
  14. 14.
    Mahan C, Bonchin S, Figg D, Gerth D, Collier C (2000) J Anal At Spectrom 15:929CrossRefGoogle Scholar
  15. 15.
    Tandon L, Kuhn K, Porterfield D, Temer D, Decker D, Hastings B (2008) LA-CP-08-0580Google Scholar
  16. 16.
    Tandon L, Kuhn K, Porterfield D, Peterson D, Gonzales E, Decker D, Gubernatis M (2009) J Herrera. LA-CP-10-00184Google Scholar
  17. 17.
    Tandon L, Decker D, Herrera J, Kuhn K, Porterfield D, Peterson D, Colman M (2010) LA-CP-11-00089Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  1. 1.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations