Journal of Radioanalytical and Nuclear Chemistry

, Volume 298, Issue 1, pp 209–217 | Cite as

Role of alkyl substituent in room temperature ionic liquid on the electrochemical behavior of uranium ion and its local environment

  • Arijit Sengupta
  • M. S. Murali
  • P. K. Mohapatra


A systematic study was carried out to understand the effect of structural modification of Cnmim+ moiety of CnmimBr (n = 6, 8 or 10) on the electrochemical behavior of uranium. The cyclic voltammetric study of the above room-temperature ionic liquids (RTIL) media revealed that with increase in the chain length the electrochemical window extended more towards the negative potential. This resulted in the possibility of conversion of U(VI) to U(III) or even possibly to, U metal via U(IV) (as UO2) when n ≥ 10. The diffusion coefficient of U(VI) was found to decrease from n = 6 to 8 to 10 due to the increasing order of viscosity of the RTIL. As a consequence, the activation energy was found to follow reverse order i.e. E act(C6mimBr) < E act(C8mimBr) < E act(C10mimBr). The conversion of UO2 2+ to UO2 was found to be quasi reversible and also exothermic while the entropy was found to decrease due to the reduction reaction. An UV–Vis spectroscopic study was also carried out to understand the local environment around uranium in aqueous and RTIL media. Among several cationic and anionic species, the predominance of UO2Cl4 2− in 7 M HCl with D4h coordination symmetry was observed. The decrease in symmetric stretching frequency of UO2 2+ in RTILs in comparison with aqueous system indicates that the bond strength of UO2 2+ in aqueous is less than that of UO2 2+ in RTILs.


Cyclic voltammetry Diffusion coefficient Structural modification Room temperature ionic liquids Uranium 


  1. 1.
    Straka M, Korenko M, Lisy F (2010) Electrochemistry of uranium in LiF–BeF2 melt. J Radioanal Nucl Chem 284:245CrossRefGoogle Scholar
  2. 2.
    Gao FX, Wang CS, Liu LS, Guo JH, Chang SW, Chang L, Li RX, Ouyang YG (2009) Electrode processes of uranium ions and electrodeposition of uranium in molten LiCl–KCl. J Radioanal Nucl Chem 280:207CrossRefGoogle Scholar
  3. 3.
    Martinot L, Lopes L, Marien J, Jérôme C (2002) Electrochemistry of lanthanum and uranium chlorides in organic media: deposition of lanthanum and uranium. J Radioanal Nucl Chem 253:407CrossRefGoogle Scholar
  4. 4.
    Martinot L, Leroy D, Jerome C, Leruth O (1997) Complexation of uranyl ion by polyvinylimidazole: electrochemical preparation and leaching tests investigations. J Radioanal Nucl Chem 224:71CrossRefGoogle Scholar
  5. 5.
    Bozkurt SS, Cavas L, Merdivan M, Molu ZB (2011) J Radioanal Nucl Chem 288:867CrossRefGoogle Scholar
  6. 6.
    Humelnicu D, Popovici E, Dvininov E, Mital C (2009) J Radioanal Nucl Chem 279:131CrossRefGoogle Scholar
  7. 7.
    Kadous A, Didi MA, Villemin D (2010) J Radioanal Nucl Chem 284:431CrossRefGoogle Scholar
  8. 8.
    Morsy AMA, Hussein AEM (2011) J Radioanal Nucl Chem 288:341CrossRefGoogle Scholar
  9. 9.
    Mahramanlioglu M, Bicer IO, Misirli T, Kilislioglu A (2007) J Radioanal Nucl Chem 273:621CrossRefGoogle Scholar
  10. 10.
    Bishay AF (2010) J Radioanal Nucl Chem 286:81CrossRefGoogle Scholar
  11. 11.
    Zou W, Zhao L, Zhu L (2012) J Radioanal Nucl Chem. doi: 10.1007/s10967-012-1950-4 Google Scholar
  12. 12.
    Karve M, Gaur C (2007) Extraction of U(VI) with Cyanex 302. J Radioanal Nucl Chem 273:405–409CrossRefGoogle Scholar
  13. 13.
    Aziz A, Jan S, Waqar F, Mohammad B, Hakim M, Yawar W (2010) Selective ion exchange separation of uranium from concomitant impurities in uranium materials and subsequent determination of the impurities by ICP-OES. J Radioanal Nucl Chem 284:117–121CrossRefGoogle Scholar
  14. 14.
    Karve M, Gaur C (2006) Liquid–liquid extraction of Th(IV) with Cyanex302. J Radioanal Nucl Chem 270:461–464CrossRefGoogle Scholar
  15. 15.
    Rajeswari B, Dhawale BA, Bangia TR, Mathur JN, Page AG (2002) Role of Cyanex-272 as an extractant for uranium in the determination of rare earths by ICP-AES. J Radioanal Nucl Chem 254:479–483CrossRefGoogle Scholar
  16. 16.
    Karve M, Pandey K (2010) Cyanex272 impregnated on Amberlite XAD-2 for separation and preconcentration of U(VI) from urban microlite (leachates)ore tailings. J Radioanal Nucl Chem 285:627–633CrossRefGoogle Scholar
  17. 17.
    Dogmane SD, Singh RK, Bajpai DD, Mathur JN (2002) Extraction of U(VI) by Cyanex272. J Radioanal Nucl Chem 253:477–482CrossRefGoogle Scholar
  18. 18.
    Zou W, Zhao L, Zhu L (2012) Sorption studies of U(VI) on Amberlite XAD-2 resin impregnated with Cyanex272. J Radioanal Nucl Chem 293:783–787CrossRefGoogle Scholar
  19. 19.
    Kalsi PK, Tomar BS, Ramakumar KL, Venugopal V (2012) Studies on recovery of uranium from fluoride matrix employing sonochemistry. J Radioanal Nucl Chem 293:863–867CrossRefGoogle Scholar
  20. 20.
    Juillet F, Adnet JM, Gasgnier M (1997) Ultrasound effects on the dissolution of refractory oxides (CeO2 and PuO2) in nitric acid. J Radioanal Nucl Chem 224(1–2):137CrossRefGoogle Scholar
  21. 21.
    Konstantinou M, Pashalidis I (2007) J Radioanal Nucl Chem 273:549CrossRefGoogle Scholar
  22. 22.
    Bagherifam S, Lakzian A, Ahmedi SJ, Rahimi MF, Halajnia A (2010) J Radioanal Nucl Chem 283:289CrossRefGoogle Scholar
  23. 23.
    Bursali EA, Merdivan M, Yurdakoc M (2010) J Radioanal Nucl Chem 283:471CrossRefGoogle Scholar
  24. 24.
    Pandey AK, Sharma RC, Iyer RH (1986) Potentiometric determination of uranium in phosphate-perchlorate medium and its applicability in the natural uranium fuel cycle. J Radioanal Nucl Chem 99(2):397–406CrossRefGoogle Scholar
  25. 25.
    Verma RS, Namboodiri VV (2001) Pure Appl Chem 73:1309–1313CrossRefGoogle Scholar
  26. 26.
    O’Mahony AM, Silvester DS, Aldous L, Hardacre C, Compton RG (2008) J. Chem Eng Data 53:2884–2891CrossRefGoogle Scholar
  27. 27.
    Deleersnyder K, Schaltin S, Fransaer J, Binnemans K, Parac-vogt TN (2009) Tetrahedron Lett 50:4582–4586CrossRefGoogle Scholar
  28. 28.
    Su YU-Z, Fu Y-C, Wei YI-M, Yan J-W, Mao B-W (2010) ChemPhysChem 11:2764–2778CrossRefGoogle Scholar
  29. 29.
    Barrosse-Antle LE, Bond AM, Compton RG, O’Mahony AM, Rogers EI, Silvester DS (2010) Chem Asian J 5:202–230CrossRefGoogle Scholar
  30. 30.
    Giridhar P, Venkatesan KA, Srinivasan TG, Vasudeva Rao PR (2007) Electrochim Acta 52:3006–3012CrossRefGoogle Scholar
  31. 31.
    Jagadeeswara Rao C, Venkatesan KA, Nagarajan K, Srinivasan TG, Vasudeva Rao PR (2009) Electrochim Acta 54:4718–4725CrossRefGoogle Scholar
  32. 32.
    De Waele R, Heerman L, D’Olieslager W (1986) J Less Common Met 122:319–327CrossRefGoogle Scholar
  33. 33.
    De Waele R, Heerman L, D’olieslager W (1982) J Electroanal Chem 142:137–146CrossRefGoogle Scholar
  34. 34.
    Kuznetsov SA, Hayashi H, Minato K, Escard MG (2006) Electrochim acta 51:1178CrossRefGoogle Scholar
  35. 35.
    Nockemann P, Servaes K, Deun RV, Hecke KV, Meervelt LV, Binnemann K, Walrand C (2007) Inorg Chem 46(26):11335CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Arijit Sengupta
    • 1
  • M. S. Murali
    • 1
  • P. K. Mohapatra
    • 1
  1. 1.Radiochemistry DivisionBhabha Atomic Research CentreMumbaiIndia

Personalised recommendations