Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 295, Issue 2, pp 1487–1493 | Cite as

Quantifying the geometry correction factor and effectiveness parameter for Bonner sphere spectrometer with 3He counter

  • Rahim Khabaz
  • Reza Izadi Najafabadi
Article

Abstract

This paper presents the evaluation of the geometry correction factor for calibration of Bonner sphere spectrometer (BSS) equipped with the 3He counter (typical SP9), based on Monte Carlo simulation. Using the MCNP4C code, geometry factors and effectiveness parameters (δ) of a 8″ polyethylene sphere (r = 10.16 cm) were calculated for 10 different energies and 3 various distances between the source and center of the sphere. The obtained results showed that the geometry factor increases with the distance, and the effectiveness parameter is independent of distance. Finally, for 2″, 3″, 5″, 8″ and 12″ spheres exposed to four different radio-isotopic neutron sources with various energy spectrums, the effectiveness parameters were determined, which it is worthy to consider δ  δ(r, E).

Keywords

Neutron spectrometry Bonner sphere Calibration Geometry factor Effectiveness parameter Monte Carlo 

References

  1. 1.
    Nakamura T (2003) Recent development of advanced neutron detection technology. J Nucl Radiochem Sci 4:15–24Google Scholar
  2. 2.
    Vega-Carrillo HR et al (2009) Spectra and dose with ANN of 252Cf, 241Am–Be, and 239Pu–Be. J Radioanal Nucl Chem 281:615–618CrossRefGoogle Scholar
  3. 3.
    Thomas DJ, Alevra AV (2002) Bonner sphere spectrometers-a critical review. Nucl Instrum Methods A 476:12–20CrossRefGoogle Scholar
  4. 4.
    Khabaz R, Miri H (2011) Measurement of neutron spectrum with multi-sphere using BF3 and evaluation of scattering effect on spectrum. Nucl Technol Radiat Prot 26:140–146CrossRefGoogle Scholar
  5. 5.
    Khabaz R, Miri H (2011) Determination of 241Am–Be spectra using Bonner sphere spectrometer by applying shadow cone technique in calibration. J Appl Sci 11:2849–2854CrossRefGoogle Scholar
  6. 6.
    Khabaz R (2012) Study of a new multi-sphere spectrometer based on water moderator with a high efficiency 6LiI(Eu) detector. J Radioanal Nucl Chem 293:383–389CrossRefGoogle Scholar
  7. 7.
    Hakim M et al (2008) Characterization of the CRNA Bonner sphere spectrometer based on LiI scintillator exposed to an Am–Be neutron source. Radiat Meas 43:1095–1099CrossRefGoogle Scholar
  8. 8.
    Hakim M, Zahir I, Tassadit S, Malika A (2010) MCNP5 evaluation of a response matrix of a Bonner sphere spectrometer with a high efficiency 6LiI (Eu) detector from 0.01 to 20 MeV neutron. J Radioanal Nucl Chem 284:253–263CrossRefGoogle Scholar
  9. 9.
    Tripathy SP et al (2009) Measurement of 241Am–Be spectra (bare and Pb-covered) using TLD pairs in multi-spheres: spectrum unfolding by different methods. Nucl Instrum Methods A 598:556–560CrossRefGoogle Scholar
  10. 10.
    Vega-Carrillo HR (2002) TLD pairs, as thermal neutron detectors in neutron multisphere spectrometry. Radiat Meas 35(251):254Google Scholar
  11. 11.
    Vega-Carrillo HR, Hernandez-Almaraz B, Hernandez-Davila VM, Montalvo TR, Ortiz-Hernandez A (2010) Neutron spectrum and doses in a 18 MV LINAC. J Radioanal Nucl Chem 283:261–265CrossRefGoogle Scholar
  12. 12.
    Wiegel B, Alevra AV (2002) NEMUS—the PTB neutron multisphere spectrometer: bonner spheres and more. Nucl Instrum Methods 476:36–41CrossRefGoogle Scholar
  13. 13.
    Khabaz R, Miri H (2011) Development of a Bonner sphere spectrometer with emphasis on decreasing the contribution of scattering by using a new designed shadow cone. J Radioanal Nucl Chem 289:789–794CrossRefGoogle Scholar
  14. 14.
    Taylor GC (2010) Geometry corrections for cylindrical neutron area survey meters. Appl Radiat Isot 68:546–549CrossRefGoogle Scholar
  15. 15.
    Axton EJ (1972) The effective centre of a moderating sphere when used as an instrument for fast neutron flux measurement. J Nucl Energy 26:581–583CrossRefGoogle Scholar
  16. 16.
    Harrison KG (1981) The calibration of neutron detectors with spherical moderators. Nucl Instrum Methods 184:595–597CrossRefGoogle Scholar
  17. 17.
    Hunt JB (1984) The calibration of neutron sensitive spherical devices. Radiat Prot Dosimetry 8:239–251Google Scholar
  18. 18.
    ICRP (1973) Data for protection against ionizing radiation from external sources. ICRP Publication 21, Pergamon Press, OxfordGoogle Scholar
  19. 19.
    Briesmeister JF (2000) MCNP-a general Monte Carlo N-particle transport code, Version 4C. Los Alamos National Laboratory Report LA-13709-M, Los AlamosGoogle Scholar
  20. 20.
    Khabaz R, Miri H (2011) Evaluation of response matrix of a multisphere neutron spectrometer with water moderator. PRAMANA J Phys 77:599–609CrossRefGoogle Scholar
  21. 21.
    Griffith RV, Palfalvi J, Madhvanath U (1990) Compendium of neutron spectra and detector responses for radiation protection purposes. International Atomic Energy Agency, Technical Report Series No. 318 Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  1. 1.Physics Department, Faculty of SciencesGolestan UniversityGorganIran
  2. 2.Physics Department, School of SciencesFerdowsi University of MashhadMashhadIran

Personalised recommendations