Journal of Radioanalytical and Nuclear Chemistry

, Volume 295, Issue 3, pp 2103–2110 | Cite as

Green and efficient extraction strategy to lithium isotope separation with double ionic liquids as the medium and ionic associated agent

  • Xu Jingjing
  • Li Zaijun
  • Gu Zhiguo
  • Wang Guangli
  • Liu Junkang


The paper reported a green and efficient extraction strategy to lithium isotope separation. A 4-methyl-10-hydroxybenzoquinoline (ROH), hydrophobic ionic liquid—1,3-di(isooctyl)imidazolium hexafluorophosphate ([D(i-C8)IM][PF6]), and hydrophilic ionic liquid—1-butyl-3-methylimidazolium chloride (ILCl) were used as the chelating agent, extraction medium and ionic associated agent. Lithium ion (Li+) first reacted with ROH in strong alkali solution to produce a lithium complex anion. It then associated with IL+ to form the Li(RO)2IL complex, which was rapidly extracted into the organic phase. Factors for effect on the lithium isotope separation were examined. To obtain high extraction efficiency, a saturated ROH in the [D(i-C8)IM][PF6] (0.3 mol l−1), mixed aqueous solution containing 0.3 mol l−1 lithium chloride, 1.6 mol l−1 sodium hydroxide and 0.8 mol l−1 ILCl and 3:1 were selected as the organic phase, aqueous phase and phase ratio (o/a). Under optimized conditions, the single-stage extraction efficiency was found to be 52 %. The saturated lithium concentration in the organic phase was up to 0.15 mol l−1. The free energy change (ΔG), enthalpy change (ΔH) and entropy change (ΔS) of the extraction process were −0.097 J mol−1, −14.70 J mol K−1 and −48.17 J mol−1 K−1, indicating a exothermic process. The partition coefficients of lithium will enhance with decrease of the temperature. Thus, a 25 °C of operating temperature was employed for total lithium isotope separation process. Lithium in Li(RO)2IL was stripped by the sodium chloride of 5 mol l−1 with a phase ratio (o/a) of 4. The lithium isotope exchange reaction in the interface between organic phase and aqueous phase reached the equilibrium within 1 min. The single-stage isotope separation factor of 7Li–6Li was up to 1.023 ± 0.002, indicating that 7Li was concentrated in organic phase and 6Li was concentrated in aqueous phase. All chemical reagents used can be well recycled. The extraction strategy offers green nature, low product cost, high efficiency and good application prospect to lithium isotope separation.


Lithium Isotope separation Ionic liquid Solvent extraction 



The authors acknowledge the financial support from the National Natural Science Foundation of China (21176101) and the Program for New Century Excellent Talents in University of China (NCET-11-0657) and sponsored by Qing Lan Project.


  1. 1.
    Lewis GN, Macdonald RT (1936) J Am Chem Soc 58:2519–2524CrossRefGoogle Scholar
  2. 2.
    Saleem M, Hussain S, Rafiq M, Baig MA (2006) J Appl Phys 100:053111-1-053111-7Google Scholar
  3. 3.
    Olivares IE, Duarte AE, Saravia EA, Duarte FJ (2002) Appl Opt 41:2973–2980CrossRefGoogle Scholar
  4. 4.
    Black JR, Umeda G, Dunn B, McDonough WF, Kavner A (2009) J Am Chem Soc 131:9904–9905CrossRefGoogle Scholar
  5. 5.
    Jeon YS, Jang NH, Kang BM, Jeon YS, Kim CS, Choi KY, Ryu H (2007) Bull Korean Chem Soc 28:451–455CrossRefGoogle Scholar
  6. 6.
    Kim DW (2002) J Radioanal Nucl Chem 252:559–563CrossRefGoogle Scholar
  7. 7.
    Takahashi H, Zhang YH, Miyajima T, Oi T (2006) J Mater Chem 16:1462–1469CrossRefGoogle Scholar
  8. 8.
    Kim DW, Kang BM, Jeon BK, Jeon YS (2003) J Radioanal Nucl Chem 256:81–85CrossRefGoogle Scholar
  9. 9.
    Araki H, Umeda M, Enokida Y, Yamamoto I (1998) Fusion Eng Des 39–40:1009–1013CrossRefGoogle Scholar
  10. 10.
    Hoshinoa T, Terai T (2011) Fusion Eng Des 86:2168–2171CrossRefGoogle Scholar
  11. 11.
    Jiang YL, Zhang XX, Qian JH, Gu ZF, Lu HB, Fu SC (1986) Atomic Energy Sci Technol 20:2–8Google Scholar
  12. 12.
    Otake K, Suzuki T, Kim HJ, Nomura M, Fujii Y (2006) Novel J Nucl Sci Technol 43:419–422CrossRefGoogle Scholar
  13. 13.
    Chen YH, Yan JY, Li YK, Feng HZ, Yao BL, Sheng HY (1982) Chin J Org Chem 4:257–262Google Scholar
  14. 14.
    Olivares IE, Rojas C (2002) Rev Mex Fis 48:72–73Google Scholar
  15. 15.
    Yanase S, Oi T, Hashikawa S (2000) J Nucl Sci Technol 37:919–923CrossRefGoogle Scholar
  16. 16.
    Zenzai K, Yanase S, Zhang YH, Oi T (2008) Prog Nucl Energy 50:494–498CrossRefGoogle Scholar
  17. 17.
    Mouri M, Yanase S, Oi T (2008) J Nucl Sci Technol 45:384–389CrossRefGoogle Scholar
  18. 18.
    Yanase S, Hayama W, Oi T (2003) Z Naturforsch 58:306–312Google Scholar
  19. 19.
    Mouri M, Asano K, Yanase S, Oi T (2007) J Nucl Sci Technol 44:73–80CrossRefGoogle Scholar
  20. 20.
    Asano K, Yanase S, Oi T (2008) J Nucl Sci Technol Suppl 5:24–29Google Scholar
  21. 21.
    Fang SQ, Zhi KZ, Fu L (1987) J Nucl Radiochem 9:142–147Google Scholar
  22. 22.
    Grote Z, Wizemann HD, Scopelliti R, Severin K (2007) Z Anorg Allg Chem 633:858–864CrossRefGoogle Scholar
  23. 23.
    Schenkel-Rudin H, Schenkel-Rudin M (1944) Helv Chim Acta 27:1456–1460CrossRefGoogle Scholar
  24. 24.
    Li ZJ, Wei Q, Yuan R, Zhou X, Liu HZ, Shan HX, Song QJ (2007) Talanta 71:68–72CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Xu Jingjing
    • 1
  • Li Zaijun
    • 1
  • Gu Zhiguo
    • 1
  • Wang Guangli
    • 1
  • Liu Junkang
    • 1
  1. 1.School of Chemical and Material EngineeringJiangnan UniversityWuxiChina

Personalised recommendations