Optimization of 89Zr production using Monte Carlo simulations

  • Abdulrahman Alfuraih
  • Khalid Alzimami
  • Andy K. Ma
  • Ali Alghamdi


Zirconium-89 (89Zr) can be produced in a cyclotron by focusing the proton beam on an yttrium-89 (89Y) foil target. Optimal combination of beam energy and target assembly configuration enables maximum production of 89Zr while minimizing the formation of contaminant nuclides such as 88Zr and 88Y to allow efficient and effective radiopharmaceutical labeling. Accurate modeling of the proton beam and the target is therefore an essential step to assure the best beam and target specification. We used the radiation transport code MCNPX to simulate the transport of protons through the irradiation assembly and the nuclear reaction code TALYS to obtain the production cross sections of various nuclides from proton-89Y reactions. Results from simulating the irradiation of 14 mm diameter targets with aluminum (Al) degrader at 19.8 mA for 1 h suggested that the 0.15 mm thick one would produce 227 MBq while the 0.3 mm thick one would produce 413 MBq of 89Zr with less than 1 % uncertainty. These results show excellent agreement with experimental work in literature. This work provides the basis for further experimental and theoretical assessments of the use of 89Zr as radiopharmaceutical labels.


Monte Carlo simulations Immuno-PET 



This research project was financially supported by the Strategic Technologies Program, National Plan for Science, Technology and Innovation (NPSTI) in the Kingdom of Saudi Arabia under contract No. 11-MED1586-02.


  1. 1.
    Aerts HJWL, Dubois L, Perk L, Vermaelen P, van van Dongen GaMS, Wouters BG, Lambin P (2009) Disparity between in vivo EGFR expression and 89Zr-labeled cetuximab uptake assessed with PET. J Nucl Med 50(1):123–131CrossRefGoogle Scholar
  2. 2.
    Avila-Rodriguez MA, Selwyn RG, Converse AK, Nickles RJ (2006) 86Y and 89Zr as PET imaging surrogates for 90Y: a comparative study. Proceedings of Ninth Mexican Symposium on Medical Physics. pp 45–47Google Scholar
  3. 3.
    Börjesson PKE, Jauw YWS, de Bree R, Roos JC, Castelijns Ja, Leemans CR, van Dongen GaMS, Boellaard R (2009) Radiation dosimetry of 89Zr-labeled chimeric monoclonal antibody U36 as used for immuno-PET in head and neck cancer patients. J Nucl Med 50(11):1828–1836CrossRefGoogle Scholar
  4. 4.
    Meijs WE, Haisma HJ, Klok RP, van Gog FB, Kievit E, Pinedo HM, Herscheid JD (1997) Zirconium-labeled monoclonal antibodies and their distribution in tumor-bearing nude mice. J Nucl Med 38(1):112–118Google Scholar
  5. 5.
    Perk LR, Visser OJ, Stigter-van Walsum M, Vosjan MJWD, Visser GWM, Zijlstra JM, Huijgens PC, van Dongen GAMS (2006) Preparation and evaluation of (89)Zr-Zevalin for monitoring of (90)Y-Zevalin biodistribution with positron emission tomography. Eur J Nucl Med Mol Imaging 33(11):1337–1345CrossRefGoogle Scholar
  6. 6.
    Verel I, Visser GWM, Boellaard R, van Walsum MS, Snow GB, van Dongen GAMS (2003) 89Zr immuno-PET: comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J Nucl Med 44(8):1271–1281Google Scholar
  7. 7.
    Holland JP, Sheh Y, Lewis JS (2010) Standardized methods for the production of high specific-activity zirconium-89. Nucl Med Biol 36(7):729–739CrossRefGoogle Scholar
  8. 8.
    IAEA (2009) IAEA-TRS-468: Cyclotron produced radionuclides: physical characteristics and production methods. ViennaGoogle Scholar
  9. 9.
    Dejesus OT, Nickles RJ (1990) Production and purification of 89Zr, a potential PET antibody label. Int J Radiat Appl Instrum Part A Appl Radiat Isot 41(8):789–790CrossRefGoogle Scholar
  10. 10.
    Infantino A, Cicoria G, Pancaldi D, Ciarmatori A, Boschi S, Fanti S, Marengo M, Mostacci D (2011) Prediction of 89Zr production using the Monte Carlo code FLUKA. Appl Radiat Isot 69(8):1134–1137CrossRefGoogle Scholar
  11. 11.
    Ciarmatori A, Cicoria G, Pancaldi D, Infantino A, Boschi S, Fanti S, Marengo M (2011) Some experimental studies on 89Zr production. Radiochim Acta 99(10):631–634CrossRefGoogle Scholar
  12. 12.
    Pelowitz DB (2005) MCNPX™ User’s manual. Los AlamosGoogle Scholar
  13. 13.
    Koning A, Hilaire S, Goriely S (2011) TALYS-1.4 User manual. PettenGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Abdulrahman Alfuraih
    • 1
  • Khalid Alzimami
    • 1
  • Andy K. Ma
    • 2
  • Ali Alghamdi
    • 2
  1. 1.Department of Radiological SciencesKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Radiological SciencesUniversity of DammamDammamSaudi Arabia

Personalised recommendations