Journal of Radioanalytical and Nuclear Chemistry

, Volume 295, Issue 2, pp 1361–1364 | Cite as

Cloud point extraction of 99Mo with Triton X-114

  • Swadesh Mandal
  • Susanta Lahiri


This paper reports the cloud point extraction (CPE) extraction behaviour of 99Mo in non-ionic Triton X-114 (TX-114), sodiumdodecyl sulphate (SDS) + TX-114 and sodium diethyldithiocarbamate (DDTC) + TX-114. The high extraction of 99Mo observed in all the CPE systems in pH 5 or less. The extent of extraction was almost unchanged with addition of SDS and DDTC in TX-114. Extraction behaviour was also studied in presence of common salts. It was observed the presence of salts dramatically decreased the amount of molybdenum extraction in the surfactant-rich phase.


99Mo Cloud point extraction Speciation Triton X-114 DDTC SDS 



This work was carried out under the SINP-DAE XII five year plan project Trace and Ultra trace Analysis and Isotope Production (TULIP). The author SM sincerely acknowledges University Grants Commission (UGC), New Delhi, for providing necessary fellowship.


  1. 1.
    Gullickson ND, Scamehom JF, Harwell JH (1989) Schamehom JF, Harwell JH (Eds). Marcel Dekker, New YorkGoogle Scholar
  2. 2.
    Hinze WL, Pramauro E (1993) A critical review of surfactant-mediated phase separations (cloud-point extractions): theory and applications. CRC Crit Rev Anal Chem 24:133CrossRefGoogle Scholar
  3. 3.
    Carabias-Martínez R, Rodríguez-Gonzalo E, Moreno-Cordero B, Pérez-Pavón JL, García-Pinto C, Fernández Laespada E (2000) Surfactant cloud point extraction and preconcentration of organic compounds prior to chromatography and capillary electrophoresis. J Chromatogr A 902:251CrossRefGoogle Scholar
  4. 4.
    Sikalos TI, Paleologos EK (2005) Cloud point extraction coupled with microwave or ultrasonic assisted back extraction as a preconcentration step prior to gas chromatography. Anal Chem 77:2544CrossRefGoogle Scholar
  5. 5.
    Constantinou E, Pashalidis I (2010) Uranium determination in water samples by liquid scintillation counting after cloud point extraction. J Radioanal Nucl Chem 286:461CrossRefGoogle Scholar
  6. 6.
    Levya D, Estévez J, Montero A, Pupo I (2011) Separation and determination of selenium in water samples by the combination of APDC coprecipitation: X-ray fluorescence spectrometry. J Radioanal Nucl Chem 291:699CrossRefGoogle Scholar
  7. 7.
    Bosch Ojed C, Sánchez Rojas F (2009) Separation and preconcentration by a cloud point extraction procedure for determination of metals: an overview. Anal Bioanal Chem 394:794Google Scholar
  8. 8.
    Belato ACS, Gervasio APG, Giné MF (2005) Cloud-point extraction of molybdenum in plants and determination by isotope dilution inductively coupled plasma mass spectrometry. J Anal At Spectrom 20:535CrossRefGoogle Scholar
  9. 9.
    Filik H, Çengel T, Apak R (2009) Selective cloud point extraction and graphite furnace atomic absorption spectrometric determination of molybdenum(VI) ion in seawater samples. J Hazard Mater 169:766CrossRefGoogle Scholar
  10. 10.
    Madrakian T, Ghazizadeh F (2008) Cloud-point preconcentration and spectrophotometric determination of trace amounts of molybdenum(VI) in steels and water samples. J Hazard Mater 153:695CrossRefGoogle Scholar
  11. 11.
    Shrivas K, Agarwal K, Harmukh N (2009) Trace level determination of molybdenum in environmental and biological samples using surfactant-mediated liquid–liquid extraction. J Hazard Mater 161:325CrossRefGoogle Scholar
  12. 12.
    Sasaki Y, Tagashira S, Murakami Y, Ichikawa M (1998) Spectrophotometric determination of molybdenum(VI) with O,O′-bis(2-ethylhexyl) dithiophosphoric acid in a micellar solution of triton X-100. Anal Sci 14:603CrossRefGoogle Scholar
  13. 13.
    Maiti M, Lahiri S (2010) Separation of 99Mo and 99mTc by liquid–liquid extraction using trioctylamine as extractant. J Radioanal Nucl Chem 283:661CrossRefGoogle Scholar
  14. 14.
    Nayak D, Lahiri S (2008) Production of 93mMo through natY(7Li, 3n) reaction and subsequent studies on separation and extraction behaviour of no-carrier-added 93mMo from an yttrium target. Appl Radiat Isot 66:1793CrossRefGoogle Scholar
  15. 15.
    Lahiri S, Mukhopadhyay B, Das NR (1998) Studies on liquid–liquid extraction of no-carrier added 91,92,96Nb and 93mMo isotope produced in α-particle activated zirconium target with HDEHP. Radiochim Acta 83:93Google Scholar
  16. 16.
    Lahiri S, Mukhopadhyay B (1997) Liquid–liquid extraction of carrier free produced in α-particle activated molybdenum target by HDEHP and TBP. Appl Radiat Isot 48:925CrossRefGoogle Scholar
  17. 17.
    Lahiri S, Mukhopadhyay B, Das NR (1997) LLX separation of carier-free, 94,95,97,103Ru, 93,94,95,96,99mTc and 95,96Nb produced in alpha-particle activated molybdenum by TOA. J Radioanal Nucl Chem 221:167CrossRefGoogle Scholar
  18. 18.
    Das NR, Lahiri S (1994) Liquid–liquid extraction of 99Mo and 187W with trioctylamine. Fresenius J Anal Chem 349:481CrossRefGoogle Scholar
  19. 19.
    Mandal S, Mandal A, Lahiri S, Species dependent extraction of 99Mo. J Radioanal Nucl Chem. doi: 10.1007/s10967-012-1850-7
  20. 20.
    Mandal S, Nayak D (2010) Species dependent studies of no-carrier-added 93mMo: a green method. Appl Radiat Isot 68:1892CrossRefGoogle Scholar
  21. 21.
    Mandal S, Lahiri S (2012) Studies on dynamic dissociation constant of 99Mo–insulin complex. J Radioanal Nucl Ch 292:859CrossRefGoogle Scholar
  22. 22.
    Stalikas CD (2002) Micelle-mediated extraction as a tool for separation and preconcentration in metal analysis. TrAC Trends Anal Chem 21:343CrossRefGoogle Scholar
  23. 23.
    Paleologos EK, Giokas DL, Karayannis MI (2005) Micelle-mediated separation and cloud-point extraction. TrAC Trends Anal Chem 24:426CrossRefGoogle Scholar
  24. 24.
    Stiefel EI (1977) The coordination and bioinorganic chemistry of molybdenum. Prog Inorg Chem 22:1CrossRefGoogle Scholar
  25. 25.
    Tkac P, Paulenova A (2008) Speciation of molybdenum(VI) In aqueous and organic phases of selected extraction systems. Sep Sci Technol 43:2641CrossRefGoogle Scholar
  26. 26.
    Nayak D, Lahiri S (2009) Immobilisation of no-carrier-added 93mMo on a biopolymer calcium alginate: a candidate radiopharmaceutical. J Radioanal Nucl Chem 281:181CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  1. 1.Chemical Sciences DivisionSaha Institute of Nuclear PhysicsKolkataIndia

Personalised recommendations