Skip to main content
Log in

Measuring the diffusion of noble gases through a porous medium using prompt gamma activation analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Detection of anthropogenic noble gas isotopes in the atmosphere is an important indication that a below ground nuclear-test has taken place. Diffusion plays a critical role in the transport of these gases through the geological media to the surface where they can be detected. Better techniques are need with which to study the diffusion of noble gases through porous systems. Here we demonstrate the suitability of using prompt gamma activation analysis to measure the time dependent concentration of argon as a result of its diffusion through a porous medium that is saturated with nitrogen at atmospheric pressure. The experiments were conducted in a 1 m long tube, 10 cm diameter, and packed with fine SiO2 sand. Prompt gamma activation analysis was used to measure the concentration of argon within the experimental system as a function of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Auer M, Kumberg T, Sartorius H, Wernsperger B, Schlosser C (2010) Ten years of development of equipment for measurement of atmospheric radioactive xenon for the verification of the CTBT. Pure Appl Geophys 167(4):471–486

    Article  Google Scholar 

  2. Zähringer M, Becker A, Nikkinen M, Saey P, Wotawa G (2009) CTBT radioxenon monitoring for verification: today’s challenges. J Radioanal Nucl Chem 282(3):737–742

    Article  Google Scholar 

  3. Dresel P, Olsen K, Hayes J, McIntyre J, Waichler S, Kennedy B (2008) Environmental applications of stable xenon and radioxenon monitoring. J Radioanal Nucl Chem 276(3):763–769

    Article  CAS  Google Scholar 

  4. Wotawa G, Becker A, Kalinowski M, Saey P, Tuma M, Zähringer M (2010) Computation and analysis of the global distribution of the radioxenon isotope 133Xe based on emissions from nuclear power plants and radioisotope production facilities and its relevance for the verification of the nuclear-test-ban treaty. Pure Appl Geophys 167(4):541–557

    Article  Google Scholar 

  5. Bird RB, Stewart WE, Lightfoot EN (2007) Transport phenomena, 2nd edn. Willey, New York

    Google Scholar 

  6. Deen WM (1998) Analysis of transport phenomena. Topics in chemical engineering. Oxford University Press, Inc., New York

    Google Scholar 

  7. GarcÌa-GutiÈrrez M, Mingarro M, Missana T, MartÌn PL, Sedano LA, Cormenzana JL (2004) Diffusion experiments with compacted powder/pellets clay mixtures. Appl Clay Sci 26(1–4):57–64

    Article  Google Scholar 

  8. Allaire SE, Lafond JA, Cabral AR, Lange SF (2008) Measurement of gas diffusion through soils: comparison of laboratory methods. J Environ Monit 10(11):1326–1336

    Article  CAS  Google Scholar 

  9. Abu-El-Sha’r W, Abriola LM (1997) Experimental assessment of gas transport mechanisms in natural porous media: parameter evaluation. Water Resour Res 33(4):505–516

    Article  Google Scholar 

  10. Rees KCJV, Sudicky EA, Rao PSC, Reddy R (1991) Evaluation of laboratory techniques for measuring diffusion coefficients in sediments. Environ Sci Technol 25(9):1605–1611

    Article  Google Scholar 

  11. Takeda M, Nakajima H, Zhang M, Hiratsuka T (2008) Laboratory longitudinal diffusion tests: 1. Dimensionless formulations and validity of simplified solutions. J Contam Hydrol 97(3–4):117–134

    Article  CAS  Google Scholar 

  12. Vaatainen K, Timonen J, Hautojarvi A (1993) Development of a gas method for migration studies in fractured and porous media. In: Proceedings of the 16th international symposium on the scientific basis for nuclear waste management (November 30, 1992–December 4, 1992, Boston. Materials research society symposium proceedings). Materials Research Society, pp 851–856

  13. Currie JA (1960) Gaseous diffusion in porous media Part 1. A non-steady state method. Br J Appl Phys 11(8):314

    Article  CAS  Google Scholar 

  14. Islas-Juarez R, Samanego-V F, Luna E, Perez-Rosales C, Cruz J Experimental study of effective diffusion in porous media. In: 2004 SPE international petroleum conference in Mexico (November 7, 2004–November 9, 2004, Puebla, Mexico). Society of Petroleum Engineers (SPE), London, pp 781–787

  15. Rohling JH, Shen J, Wang C, Zhou J, Gu CE (2007) Determination of binary diffusion coefficients of gases using photothermal deflection technique. Appl Phys B 87(2):355–362

    Article  CAS  Google Scholar 

  16. Takai S, Mandai T, Kawabata Y, Esaka T (2005) Diffusion coefficient measurements of La2/3–xLi3x TiO3 using neutron radiography. Solid State Ionics 176(29–30):2227–2233

    Article  CAS  Google Scholar 

  17. Mair RW, Wong GP, Hoffmann D, Hurlimann MD, Patz S, Schwartz LM, Walsworth RL (1999) Probing porous media with gas diffusion NMR. Phys Rev Lett 83(16):3324

    Article  CAS  Google Scholar 

  18. Mair RW, Rosen MS, Wang R, Cory DG, Walsworth RL (2002) Diffusion NMR methods applied to xenon gas for materials study. Magn Reson Chem 40:S29–S39

    Article  CAS  Google Scholar 

  19. Pereira LM, Souza RD, Orlande HRB, Cotta RM (2001) A comparison of concentration measurement techniques for the estimation of the apparent mass diffusion coefficient. Braz J Chem Eng 18:253–265

    Article  CAS  Google Scholar 

  20. Beyerle U, Aeschbach-Hertig W, Imboden DM, Baur H, Graf T, Kipfer R (2000) A mass spectrometric system for the analysis of noble gases and tritium from water samples. Environ Sci Technol 34(10):2042–2050

    Article  CAS  Google Scholar 

  21. Mark DF, Stuart FM, de Podesta M (2011) New high-precision measurements of the isotopic composition of atmospheric argon. Geochim Cosmochim Acta 75(23):7494–7501

    Article  CAS  Google Scholar 

  22. Technologies A (2001) Inductively coupled plasma mass spectrometry. Course Number H8974A. Agilent Technologies

  23. Revay Z (2008) Prompt gamma activation analysis of samples in thick containers. J Radioanal Nucl Chem 276(3):825–830

    Article  CAS  Google Scholar 

  24. Rios Perez C, Lowrey J, Biegalski S, Deinert M (2012) Xenon diffusion studies with prompt gamma activation analysis. J Radioanal Nucl Chem 291(1):261–265

    Article  CAS  Google Scholar 

  25. Knoll G (2010) Radiation detection and measurement, 4th edn. Wiley, Hoboken

    Google Scholar 

  26. Harrison RK, Landsberger S (2009) Determination of boron over a large dynamic range by prompt-gamma activation analysis. Nucl Instrum Methods Phys Res Sect B 267(3):513–518

    Article  CAS  Google Scholar 

  27. Rèvay Z, Harrison RK, Alvarez E, Biegalski SR, Landsberger S (2007) Construction and characterization of the redesigned PGAA facility at The University of Texas at Austin. Nucl Instrum Methods Phys Res Sect A 577(3):611–618

    Article  Google Scholar 

  28. Currie LA (1968) Limits for qualitative detection and quantitative determination. Application to radiochemistry. Anal Chem 40(3):586–593

    Article  CAS  Google Scholar 

  29. Currie LA (1995) Nomenclature in evaluation of analytical methods including detection and quantification capabilities. Pure Appl Chem 67(10):25

    Article  Google Scholar 

  30. Biegalski SR, Green TC, Alvarez E, Aghara S (2007) Background characterization of The University of Texas PGAA facility. J Radioanal Nucl Chem 271(2):413–417

    Article  CAS  Google Scholar 

  31. Molnar GL (ed) (2004) Handbook of prompt gamma activation analysis with neutron beams. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  32. Figliola RS, Beasley DE (2000) Theory and design for mechanical measurements, 3rd edn. Wiley, New York

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Carlos Hidrovo for discussions about diffusion of gases through porous media, and the staff of the Nuclear Engineering Teaching Laboratory for their help with the prompt gamma measurements. This material is based upon work supported by the Department of Energy, National Nuclear Security Administration under Award Number DE-AC52-09NA28608.

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would infringe privately owned rights. Reference herein to any specific commercial product, process, or service by name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation or favoring buy the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark R. Deinert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rios Perez, C.A., Biegalski, S. & Deinert, M.R. Measuring the diffusion of noble gases through a porous medium using prompt gamma activation analysis. J Radioanal Nucl Chem 296, 951–956 (2013). https://doi.org/10.1007/s10967-012-2003-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2003-8

Keywords

Navigation