Journal of Radioanalytical and Nuclear Chemistry

, Volume 295, Issue 2, pp 1385–1393 | Cite as

A brief introduction to analytical methods in nuclear forensics



Nuclear forensic (NF) techniques are critical in responding to both environmental releases of nuclear materials and illicit trafficking activities involving both nuclear and counterfeit materials. Despite rising need, however, significant barriers exist to the future success of such research. This subset of analytical chemistry contains unique concerns (e.g. chronometry and impurity signatures), a wide variety of preparatory/instrumental approaches, and is in need of innovative solutions to current problems both in and out of the lab. The present work introduces existing NF research, development challenges and notes potential areas for advancement by highlighting several key analytical approaches. Examples of concerns and techniques discussed in this review include: chronometry, reference materials, separations, counting spectrometry, mass spectrometry and more.


Chronometry Counting spectrometry Ion exchange separations Mass spectrometry Microscopy Nuclear forensics Standard reference materials 



This work is LA-UR-12-20816.


  1. 1.
    Joint Working Group of the American Physical Society and the American Association for the Advancement of Science (2005) Nuclear forensics: role, state of the art, program needs. Washington, DCGoogle Scholar
  2. 2.
    International Atomic Energy Agency (1970) INFCIRC/140: treaty on the non-proliferation of nuclear weapons. ViennaGoogle Scholar
  3. 3.
    Grant PM, Moody KJ, Hutcheon ID et al (1998) J Radioanal Nucl Chem 235:129CrossRefGoogle Scholar
  4. 4.
    Mayer K, Wallenius M, Fanghanel T (2007) J Alloys Compd 444–445:50CrossRefGoogle Scholar
  5. 5.
    Pollanen R, Ketterer ME, Lehto S et al (2006) J Environ Radioact 90:15CrossRefGoogle Scholar
  6. 6.
    International Atomic Energy Agency (2006) International nuclear security series no. 2, technical guidance: nuclear forensics support reference manual. ViennaGoogle Scholar
  7. 7.
    LaMont SP, Hall G (2005) J Radioanal Nucl Chem 264:423CrossRefGoogle Scholar
  8. 8.
    Wallenius M, Mayer K (2000) Fresenius J Anal Chem 366:234CrossRefGoogle Scholar
  9. 9.
    Mayer K, Wallenius M, Ray I (2005) Analyst 130:43CrossRefGoogle Scholar
  10. 10.
    Moody KJ, Hutcheon ID, Grant PM (2005) Nuclear forensic analysis. CRC Press/Taylor and Francis Group, Boca RatonCrossRefGoogle Scholar
  11. 11.
    IAEA Interactive Nuclide Database. Accessed 1 May 2012
  12. 12.
    Peehs M, Walter T, Walter S (1996) Ullman’s encyclopedia of industrial chemistry. Wiley-VCH, CambridgeGoogle Scholar
  13. 13.
    Varga Z, Wallenius M, Mayer K, Keegan E, Millet S (2009) Anal Chem 81:8327CrossRefGoogle Scholar
  14. 14.
    Svedkauskaite-LeGore J, Rasmussen G, Abousahl S, van Belle P (2008) J Radioanal Nucl Chem 278:201CrossRefGoogle Scholar
  15. 15.
    Svedkauskaite-LeGore J, Mayer K, Millet S, Nicholl A, Rasmussen G, Galtrunas D (2007) Radiochim Acta 95:601CrossRefGoogle Scholar
  16. 16.
    Fahey AJ, Ritchie NWM, Newbury DE, Small JA (2010) J Radioanal Nucl Chem 284:575CrossRefGoogle Scholar
  17. 17.
    Learch RE, Norman RE (1984) Radiochim Acta 36:75Google Scholar
  18. 18.
    K Rozanski, L Araguas-Araguas, R Gonfiantini (1993) Climate change in continental isotopic records, geophysical records, vol 78. American Geophysical UnionGoogle Scholar
  19. 19.
    Pajo L, Tamborini G, Rassmusen G, Mayer K, Koch L (2001) Spectrochim Acta B 56:541CrossRefGoogle Scholar
  20. 20.
    Pajo L, Mayer K, Koch L (2001) Fresenius J Anal Chem 371:348CrossRefGoogle Scholar
  21. 21.
    Tamborini G, Phinney D, Bildstein O, Betti M (2002) Anal Chem 74:6098CrossRefGoogle Scholar
  22. 22.
    Dolgov J, Bibilashvili YK, Chorokov NA, Schubert A, Janssen G, Mayer K, Koch L (1999) Installation of a database for identification of nuclear material of unknown origin at VNIINM Moscow. In: 21st ESARDA symposium, Sevilla, SpainGoogle Scholar
  23. 23.
    Spent fuel isotopic composition database. Accessed 1 May 2012
  24. 24.
    Inn KGW, Kurosaki H, Frechou C et al (2008) Appl Radiat Isot 66:835CrossRefGoogle Scholar
  25. 25.
    Horwitz EP, Chiarizia R, Dietz ML, Diamond H, Nelson D (1993) Anal Chim Acta 281:361CrossRefGoogle Scholar
  26. 26.
    Lee MH, Park JH, Oh SY, Ahn HJ, Lee CH, Song K, Lee MS (2011) Talanta 86:99CrossRefGoogle Scholar
  27. 27.
    Moreno J, Vajda N, Danesi PR, Larosa JJ, Zeiller E, Sinojmeri M (1997) J Radioanal Nucl Chem 226:279CrossRefGoogle Scholar
  28. 28.
    Mellado J, Llaurado M, Rauret G (2001) Anal Chim Acta 443:81CrossRefGoogle Scholar
  29. 29.
    Sommers J, Cummings D, Giglio J (2009) Advances in automated gas pressurized extraction chromatography (GPEC) separations. 8th International conference on methods and application of radioanalytical chemistry, HIGoogle Scholar
  30. 30.
    Goodall P, Lythgoe C (1999) Analyst 124:263CrossRefGoogle Scholar
  31. 31.
    Katz JJ, Seaborg GT, Morss LR (1986) The chemistry of actinide elements. Chapman and Hall, New YorkCrossRefGoogle Scholar
  32. 32.
    Lozano JC, Fernandez F, Gomez JMG (1999) Appl Radiat Isot 50:475CrossRefGoogle Scholar
  33. 33.
    Wallenius M, Morgenstern A, Apostolidis C, Mayer K (2002) Anal Bioanal Chem 374:379CrossRefGoogle Scholar
  34. 34.
    Vjada N, Kim CK (2011) Anal Chem 83:4688CrossRefGoogle Scholar
  35. 35.
    Kiliari T, Pashalidis I (2010) J Radioanal Nucl Chem 284:547CrossRefGoogle Scholar
  36. 36.
    Moody KJ, Grant PM (1999) J Radioanal Nucl Chem 241:157CrossRefGoogle Scholar
  37. 37.
    Lally AE, Glover KM (1984) Nucl Instrum Methods Phys Res 223:259CrossRefGoogle Scholar
  38. 38.
    Wolf SF (1998) J Radioanal Nucl Chem 234:207CrossRefGoogle Scholar
  39. 39.
    Sill CW, Willis CP (1966) Anal Chem 38:97CrossRefGoogle Scholar
  40. 40.
    Mohanty AK, Sengupta D, Das SK, Vjayan V, Saha SK (2004) Radiat Meas 38:153CrossRefGoogle Scholar
  41. 41.
    Kumar A, Kumar M, Singh B, Sing S (2003) Radiat Meas 36:465CrossRefGoogle Scholar
  42. 42.
    McMahon CA, Fegan MF, Wong J, Long SC, Ryan TP, Colgan PA (2004) Appl Radiat Isot 60:571CrossRefGoogle Scholar
  43. 43.
    Huo X, Chen W, He Y, Jones B (2005) Appl Spectrosc Rev 40:245CrossRefGoogle Scholar
  44. 44.
    Wallenius M, Mayer K, Nicholl A, Horta J (2002) Investigation of correlations in some chemical impurities and isotope ratios for nuclear forensic purposes. In: International conference on advances in destructive and non-destructive analysis for environmental monitoring and nuclear forensics, Karlsruhe, Germany. Accessed 1 May 2012
  45. 45.
    Wyse EJ, Lee SH, LaRosa JJ, Povinec PP, DeMora SJ (2001) J Anal At Spectrom 16:1107CrossRefGoogle Scholar
  46. 46.
    Becker JS, Dietz HJ (2003) Int J Mass Spectrom 228:127CrossRefGoogle Scholar
  47. 47.
    Ruster W, Ames F, Kluge HJ et al (1989) Nucl Instrum Methods Phys Res 281:547CrossRefGoogle Scholar
  48. 48.
    Wendt K, Trautmann N, Bushaw A (2000) Nucl Instrum Methods Phys Res B 172:162CrossRefGoogle Scholar
  49. 49.
    Goode GC, Herrington J, Hall G (1964) Anal Chim Acta 30:109CrossRefGoogle Scholar
  50. 50.
    Furman H, Schoonover IC (1931) J Am Chem Soc 53:2561CrossRefGoogle Scholar
  51. 51.
    Bricker CE, Sweetser PB (1953) Anal Chem 25:764CrossRefGoogle Scholar
  52. 52.
    Davies W, Gray W (1964) Talanta 11:1203CrossRefGoogle Scholar
  53. 53.
    Tandon L, Kuhn K, Decker D, Porterfield D, Laintz K, Wong A, Holland M, Peterson DS (2009) J Radioanal Nucl Chem 282:565CrossRefGoogle Scholar
  54. 54.
    Mayer K, Wallenius M (2008) ESARDA Bull 38:44Google Scholar
  55. 55.
    Newbury D, Joy DC, Echlin P, Fiori CE, Goldstein JI (1986) Advanced scanning electron microscopy and X-ray microanalysis. Plenum, New YorkGoogle Scholar
  56. 56.
    Frontasyeva MV (2011) Phys Part Nucl 42:332CrossRefGoogle Scholar
  57. 57.
    Weise HP, Gorner W, Hedrich M (2001) Fresenius J Anal Chem 369:8CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Floyd E. Stanley
    • 1
  • A. M. Stalcup
    • 2
  • H. B. Spitz
    • 2
  1. 1.Los Alamos National LaboratoryLos AlamosUSA
  2. 2.University of CincinnatiCincinnatiUSA

Personalised recommendations