Journal of Radioanalytical and Nuclear Chemistry

, Volume 295, Issue 2, pp 1085–1092 | Cite as

The measuring of radon volumetric activity and exhalation rate in ground-level air

  • Donatas Butkus
  • Audrius Gagiškis
  • Erika Streckytė
  • Raimondas Grubliauskas


The physical and chemical characteristics of radon gas make it a good tracer for use in the application of atmospheric transport models. Radon exhalation rate from soil is one of the most important factors for evaluation of the environmental radon level. For this purpose to find out the volumetric activity of radon in ground-level air the measuring has been made using radon monitor SARAD RTM 2200. Radon volumetric activity and radon exhalation rate in ground-level air and at different depths of soil depending on soil temperature and atmospheric parameters in different seasons of the year was calculated and evaluated in two areas of Vilnius city. It has been established that the volumetric activity of radon and radon exhalation intensity is vertically distributed and the corresponding increase in deeper soil layers, and depends on the specific activity of radium, soil temperature and moisture content, temperature difference between soil and atmospheric temperatures.


Radon Exhalation Volumetric activity in ground-level air Radium activity Difference of temperature Radon monitor 


  1. 1.
    Abromaitytė R, Pilkytė L, Morkūnas G (2003) Radon risk investigation in Panevėžys city development area. Health Sci 3(26):32–35Google Scholar
  2. 2.
    Barnet I, Pacherova P, Neznal M, Neznal M (2008) Radon in geological environment—Czech experience. Czech Geological Survey 19, Praha, p 71Google Scholar
  3. 3.
    Chau ND, Chruściel E, Prokólski Ł (2005) Factors controlling measurements of radon mass exhalation rate. J Environ Radioact 82:363–369CrossRefGoogle Scholar
  4. 4.
    Clavensjö B, Åkerblom G, Morkūnas G (1999) Indoor radon. Its reduction techniques. litimo, Vilnius, p 128Google Scholar
  5. 5.
    Delacroix D, Guerre JP, Leblanc P, Hickman C (2002) Radionuclide and radiation protection data handbook. Wiley, New York, pp 75–101Google Scholar
  6. 6.
    El-Shershaby A (2003) Environmental isotopes and natural radioactivity assessment for clays, products derived from clay and radon exhalation rate of clays in Egypt. Environ Prot Eng 29(3–4):25–40Google Scholar
  7. 7.
    Goto M, Moriizumi J, Yamazawa H. (2008) Estimation of global radon exhalation rate distribution. In: International symposium on the natural radiation environment. Nagoya University, Nagoya, p 169–172Google Scholar
  8. 8.
    Hasan AK, Subber ARH, Shaltakh R (2011) Measurement of radon concentration in soil gas using RAD7 in the environs of Al-Najaf Al-Ashraf City-Iraq. Adv Appl Sci Res 2(5):273–278Google Scholar
  9. 9.
    Häberli A (2009) Rn as a tracer for gas transport in soil and fluxes at the soil–atmosphere interface. Term paper in the master of environmental sciences. Department of Environmental Sciences, Zurich, p 20Google Scholar
  10. 10.
    Jasaitis D, Girgždys A (2007) Natural radionuclide distribution and radon exhalation rate from the soil in Vilnius city. J Environ Eng Lands Manag 15(1):31–37Google Scholar
  11. 11.
    Karpińska M, Mnich Z, Kapała J, Szpak A (2009) The evaluation of indoor radon exposure in houses. Pol J Environ Stud 18(6):1005–1012Google Scholar
  12. 12.
    Khattak NU, Khan MA, Shah MT, Jared MW (2011) Radon concentration in drinking water sources of the main campus of the University of Peshawer and surrounding areas, Khybes Pakhtunkhwa, Pakistan. J Radioanal Nucl Chem 290(2):493–505CrossRefGoogle Scholar
  13. 13.
    Lawrence CE, Akber RA, Bollhöfer A, Martin P (2009) Radon-222 exhalation from open ground on and around a uranium mine in the wet–dry tropics. J Environ Radioact 100:1–8CrossRefGoogle Scholar
  14. 14.
    Mahajan S, Walia V, Bajwa BS (2010) Soil-gas radon/helium surveys in some neotectonic areas of NW Himalayan foothills, India. Nat Hazard Earth Syst Sci 10:1221–1227CrossRefGoogle Scholar
  15. 15.
    Markkanen M, Arvela H (1992) Radon emanation from soils. Radiat Prot Dosim 45:269–272Google Scholar
  16. 16.
    Morkūnas G, Pilkytė L (2002) Indoor radon. Its reduction techniques. Asveja, Vilnius, p 7–13Google Scholar
  17. 17.
    Navickas J (2008) Agrophysics and agrometeorology: methodological suggestions. Ardiva, Kaunas, p 100Google Scholar
  18. 18.
    Nazaroff WW, Nero AV (1988) Soil as a source of indoor radon: generation, migration and entry, in radon and its decay products in indoor air. Wiley, New York, pp 57–112Google Scholar
  19. 19.
    Noori H, Ranjbar AH (2011) Radon health hazards of some rocks of Iranian origin, frequently used as buildings stones. J Radioanal Nucl Chem 290(1):183–186CrossRefGoogle Scholar
  20. 20.
    Sombai J, Haki J, Kóvási N, Szeiler G, Szabó P (2011) Annual average radon concentration in the shows caves of Hungary. J Radioanal Nucl Chem 287(2):427–433CrossRefGoogle Scholar
  21. 21.
    Sun K, Guo Q, Zhuo W (2004) Feasibility for mapping radon exhalation rate from soil in China. J Nucl Sci Technol 41(1):86–90CrossRefGoogle Scholar
  22. 22.
    Sundal AV, Valen V, Soldal O, Strand T (2007) The influence of meteorological parameters on soil radon levels in permeable glacial sediments. Sci Total Environ 2008(389):418–428Google Scholar
  23. 23.
    Vaupotič J, Gregorič A, Kobal I (2010) Radon concentration in soil gas and radon exhalation rate at the Ravne Fault in NW Slovenia. Nat Hazards Earth Syst Sci 10:895–899CrossRefGoogle Scholar
  24. 24.
    Vaupotič J, Gregorič A, Kozak K (2010) Radon potential of a fly ash pile—a criterion for its use as a building lot. RMZ Mater Geoenviron 57(4):501–510Google Scholar
  25. 25.
    Wysocka M, Kotyrba A, Chalupnik S, Skowronek J (2005) Geophysical methods in radon risk studies. J Environ Radioact 82:351–362CrossRefGoogle Scholar
  26. 26.
    Zaucker F, Daum P H, Wetteraner U (1996) Atmospheric 222Rn measurements during the 1993 NARE intensive. J Geophys Res, p 149–164Google Scholar
  27. 27.
    Žunić ZS, Kobal I, Vaupotič J (2006) High natural radiation exposure in radon spa areas: a detailed field investigation in Niška Banja (Balkan region). J Environ Radioact 89(3):249–260CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Donatas Butkus
    • 1
  • Audrius Gagiškis
    • 1
  • Erika Streckytė
    • 1
  • Raimondas Grubliauskas
    • 1
  1. 1.Vilnius Gediminas Technical UniversityVilniusLithuania

Personalised recommendations