Advertisement

Journal of Radioanalytical and Nuclear Chemistry

, Volume 295, Issue 2, pp 1161–1169 | Cite as

Adsorptive removal of thorium from aqueous solution using diglycolamide functionalized multi-walled carbon nanotubes

  • Ashish Kumar Singha Deb
  • B. N. Mohanty
  • P. Ilaiyaraja
  • K. Sivasubramanian
  • B. Venkatraman
Article

Abstract

Multi-walled carbon nanotubes (MWCNTs) were functionalized with diglycolamide (DGA) through chemical covalent route. The adsorption behavior of the DGA-functionalized-MWCNTs (DGA-MWCNTs) towards thorium from aqueous solution was studied under varying operating conditions of pH, concentration of thorium, DGA-MWCNTs dosages, contact time, and temperature. The effective range of pH for the removal of Th(IV) is 3.0–4.0. Kinetic data followed a pseudo-second-order model. The equilibrium data were correlated with the Langmuir, Freundlich, Dubinin-Radushkevich and Temkin models. The equilibrium data are best fitted with Langmuir model. The equilibrium Th(IV) sorption capacity was estimated to be 10.58 mg g−1 at 298 K. The standard enthalpy, entropy, and free energy of adsorption of the thorium with DGA-MWCNTs were calculated to be 8.952 kJ mol−1, 0.093 kJ mol−1 K−1 and -18.521 kJ mol−1 respectively at 298 K. The determined value of sticking probability (0.072) and observed kinetic and isotherm models reveal the chemical adsorption of thorium on DGA-MWCNTs.

Keywords

Thorium Multi-walled carbon nanotubes Diglycolamide Adsorption isotherm models Kinetics of adsorption 

Notes

Acknowledgments

The authors sincerely thank Shri S. C. Chetal, Director, IGCAR for his support during this work. The authors thank Dr. D. Ponraju, Head, PCS, SED, IGCAR for valuable suggestions and Shri H. Krishnan, Shri Shailesh Joshi, RSD, IGCAR for their help during the experiments and analysis.

References

  1. 1.
    Salinas-Pedroza MG, Olguin MT (2004) J Radioanal Nucl Chem 260(1):115–118CrossRefGoogle Scholar
  2. 2.
    Metaxas M, Kasselouri-Rigopoulou V, Galiatsatou P, Konstantopoulou C, Oikonomou D (2003) J Hazard Mater B97:71–82CrossRefGoogle Scholar
  3. 3.
    Liao X, Li L, Shi B (2004) J Radioanal Nucl Chem 260(3):619–625CrossRefGoogle Scholar
  4. 4.
    Anirudhan TS, Rijith S, Tharun AR (2010) Colloids Surf A 368:13–22CrossRefGoogle Scholar
  5. 5.
    Dyer A, Jozefowicz LC (1992) J Radioanal Nucl Chem 159:47–62CrossRefGoogle Scholar
  6. 6.
    Qadeer R, Hanif J, Saleem M, Afzal M (1992) J Radioanal Nucl Chem 157(2):321–334CrossRefGoogle Scholar
  7. 7.
    Hu T, Tan L (2012) J Radioanal Nucl Chem 292:819–827CrossRefGoogle Scholar
  8. 8.
    Zhao DL, Feng SJ, Chen CL, Chen SH, Xu D, Wang XK (2008) Appl Clay Sci 41:17–23CrossRefGoogle Scholar
  9. 9.
    Aslani MAA, Eral M, Akyil (1998) J Radioanal Nucl Chem 238(1–2):123–127CrossRefGoogle Scholar
  10. 10.
    Nakajima A, Tsuruta T (2004) J Radioanal Nucl 260(1):13–18CrossRefGoogle Scholar
  11. 11.
    Tsuruta T (2004) Water Air Soil Pollut 159:35–47CrossRefGoogle Scholar
  12. 12.
    Ozay O, Ekici S, Aktas N, Sahiner N (2011) J Environ Manage 92:3121–3129CrossRefGoogle Scholar
  13. 13.
    Akkaya R, Ulusoy U (2008) J Hazard Mater 151:380–388CrossRefGoogle Scholar
  14. 14.
    Kaygun AK, Akyil S (2007) J Hazard Mater 147:357–362CrossRefGoogle Scholar
  15. 15.
    Ulusoy U, Akkaya R (2009) J Hazard Mater 163:98–108CrossRefGoogle Scholar
  16. 16.
    Qadeer R, Hanif J, Hanif I (1995) J Radioanal Nucl Chem 190(1):112–130CrossRefGoogle Scholar
  17. 17.
    Korkisch J, tera F (1961) Anal Chem 33(9):1264–1266CrossRefGoogle Scholar
  18. 18.
    Korkisch J, Orlandini KA (1968) Anal Chem 40(13):1952–1955CrossRefGoogle Scholar
  19. 19.
    Chandramouleeswaran S, Ramkumar J, Sudarsan V, Reddy AVR (2011) J Hazard Mater 198:159–164CrossRefGoogle Scholar
  20. 20.
    Metilda P, Gladis JM, Prasada Rao T (2005) Radiochim Acta 93:219–224CrossRefGoogle Scholar
  21. 21.
    Hritcu D, Humelnicu D, Dodi G, Popa MI (2012) Carbohydr Polym 87:1185–1191CrossRefGoogle Scholar
  22. 22.
    Hussein AEM (2011) J Radioanal Nucl Chem 289:321–329CrossRefGoogle Scholar
  23. 23.
    Rao GP, Lu C, Su F (2007) Sep Sci Technol 58:224–231Google Scholar
  24. 24.
    Ren X, Chen C, Nagatsu M, Wang X (2011) Chem Eng J 170:395–410CrossRefGoogle Scholar
  25. 25.
    Schierz A, Zanker H (2009) Environ Pollut 157:1088–1094CrossRefGoogle Scholar
  26. 26.
    Sun Y, Yang S, Sheng G, Guo Z, Wang X (2012) J Environ Radioact 105:40–47CrossRefGoogle Scholar
  27. 27.
    Wang M, Tao X, Song X (2011) J Radioanal Nucl Chem 122:859–865CrossRefGoogle Scholar
  28. 28.
    Perevalov SA, Molochnikova NP (2009) J Radioanal Nucl Chem 281:603–608CrossRefGoogle Scholar
  29. 29.
    Wang X, Chen C, Hu W, Ding A, Xu D, Zhou X (2005) Environ Sci Technol 39:2856–2860CrossRefGoogle Scholar
  30. 30.
    Yavari R, Huang YD, Ahmandi SJ (2011) J Radioanal Nucl Chem 287:393–401CrossRefGoogle Scholar
  31. 31.
    Tan XL, Chen CL, Wang XK, Hu WP (2008) Radiochim Acta 96:23–29CrossRefGoogle Scholar
  32. 32.
    Kim SW, Kim T, Kim YS, Choi HS, Lim HJ, Yang SJ, Park CR (2012) Carbon 50:3–33CrossRefGoogle Scholar
  33. 33.
    Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106(3):1105–1136CrossRefGoogle Scholar
  34. 34.
    Sasaki Y, Choppin GR (1996) Anal Sci 12:225–230CrossRefGoogle Scholar
  35. 35.
    Manchanda VK, Pathak PN (2004) Sep Sci Technol 35:85–103Google Scholar
  36. 36.
    Deb AKS, Ilaiyaraja P, Ponraju D, Venkatraman B (2012) J Radioanal Nucl Chem 291:877–883CrossRefGoogle Scholar
  37. 37.
    Lagergren S (1898) Kungliga Svenska Vetenskapsakademiens Handlingar 24:1–39Google Scholar
  38. 38.
    Ho YS, McKay G (1998) Trans IchemE 76(B):313–318Google Scholar
  39. 39.
    Chien SH, Clayton WR (1980) Soil Sci Soc Am J 44:265–268CrossRefGoogle Scholar
  40. 40.
    Weber WJ, Morris JC (1963) J Sanit Eng Div Am Soc Civ Eng 89:31–59Google Scholar
  41. 41.
    Allen SJ, Mckay G, Porter JF (2004) J Colloid Interf Sci 280:322–333CrossRefGoogle Scholar
  42. 42.
    Asgari G, Roshani B, Ghanizadeh G (2012) J Hazard Mater 217–218:123–132CrossRefGoogle Scholar
  43. 43.
    Jung LS, Campbell CT (2000) J Phys Chem B 104:11168–11178CrossRefGoogle Scholar
  44. 44.
    Sundaram CS, Viswanathan N, Meenakshi S (2008) J Hazard Mater 155:206–215CrossRefGoogle Scholar
  45. 45.
    Li K, Liu Z, Wen T, Chen L, Dong Y (2012) J Radioanal Nucl Chem 292:269–276CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2012

Authors and Affiliations

  • Ashish Kumar Singha Deb
    • 1
  • B. N. Mohanty
    • 1
  • P. Ilaiyaraja
    • 1
  • K. Sivasubramanian
    • 1
  • B. Venkatraman
    • 1
  1. 1.Radiological Safety Division, Radiological Safety and Environmental GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations